
data Patient where

 Patient :
 Int [Private] -- Patient id
 -> String [Private] -- Patient name
 -> Int [Public] -- Patient age
 -> Patient

Describe data representation with confidentiality types

meanAge : List Patient -> Int [Public]

Q: How do we
ensure a program

does not leak
sensitive data?

The Granule language:
Fine-grained program verification via types

Granule: track &
enforce security levels

of data via the
 type system of a

programming language

2

Programmers then write standard functional
programs, but with confidentiality specifications

A value of type:

is a value of type ‘A’ that can be accessed
at a security level ‘L’

The Granule type checker rejects any program
leaks private values to a public context:

allNames : List Patient -> String [Public] ╳

✔

Int [Private]

A [L]

e.g. a private integer
has type

e.g.

e.g.

Granule can track various different
data-flow properties of computation in
a similar way.

For example, it can track how many
times values are used via a type:

Meaning: a value of type ‘A‘ which can
be used exactly ’n‘ times.

This allows tighter specifications of
programs, reducing the number of
possible implementations, and also
provides resource reasoning. 
 For example:

to transform a list of A elements of
length n into a list of B elements of
length n requires a function which
maps A elements to B elements which
can be used exactly n times:

This gives a guarantee on running time,
and cuts out buggy implementations.

More details for the interested

granule-project.github.io

e.g.

map : forall (a,b : Type, n : Nat)
 . (a -> b) [n]
 -> Vec n a
 -> Vec n b

A [n]

Granule allows domain-
specific data-flow
properties to be

automatically checked
at compile time

Vilem-Benjamin Liepelt1 Dominic Orchard1 Harley Eades III2 Preston Keel2

1 2

