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Abstract. Graded types are an overarching paradigm that provides
fine-grained reasoning by reflecting the structure of typing rules into a
system of type annotations. A significant subset of graded type systems is
that of coeffect systems, originally introduced by Petricek, Orchard, and
Mycroft as a dual to effect systems, capturing the dataflow of values in
a calculus by annotating variables and function types with elements of a
semiring. A particularly useful instance of these graded coeffect systems
is to capture security properties of data to enforce information-flow con-
trol. We examine this particular use case and give a new characterisation
of a subclass of semirings which enable the key non-interference theorem
of information-flow control: that less privileged observers are unable to
distinguish the dependence of computations on more privileged inputs.
The result relies on a logical relations proof and is mechanised in Agda.
‘We consider its relationship to other characterisations of non-interference
in the recent literature on graded types and in the historical context of
coeffect and graded systems. We leverage these results for programming
with security in the Granule programming language, a research language
for graded types. We conclude with extensions to Granule that go beyond
non-interference to declassification, leveraging graded types to control
deliberate information leakage.

1 Introduction

An important consideration in the design of a software system is how security
is handled. A typical program has access to various data sources that must be
kept secret. Therefore, it is vital that such a program carefully manage data that
comes from secret inputs, ensuring that the data only flows to corresponding
secret outputs. A program that fails to manage this correctly can leak secret
data and is said to violate confidentiality. To guarantee this does not happen, a
system designer may choose to enforce some security policy, but how?
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A well-studied method for ensuring that programs obey a specified security
policy is Information Flow Control (IFC) [28]. IFC is a form of dependence
analysis, which ensures that secret inputs do not flow to public outputs, whether
this be through bug or malice. In a language-based setting, aspects of IFC can
be achieved statically [I] or dynamically [2§]. IFC analyses typically associate
labels (secrecy annotations) to data, tracking these labels through a program’s
data and control flow.

For example, consider a function with two integer inputs that computes a
pair, the first component of which is an arithmetic expression over both inputs
and the second component is just the first input:

process = Az.A\y.(z + vy, x)

A static IFC type system might then permit the following type specification for
this function, where the first input has been annotated as low security (public)
and the second as high security (secret) and thus the first component of the pair
is high security, and the second component is low security:

process : Integer™® — Integer' — (Integer' x Integer'®)

Such a system would disallow a typing of the output pair that has both com-
ponents marked as low security as this would constitute a potential leak of the
first input. In this work we focus on using types for IFC analysis, in particular
using the framework of coeffect-and-type systems whose notation differs to the
above example, but which captures the same fundamental ideas.

Coeffect-and-type systems (hereafter coeffect systems for brevity) were pro-
posed by Petricek, Orchard, and Mycroft as a dual to effect systems [52] 53],
providing a general type-based analysis of context dependence in programs. Later
work brought effect and coeffect systems under the umbrella of graded type sys-
tems [2I]. In general, graded type systems provide a principled approach for
analysing programs by augmenting a base type system with annotations (called
grades) consisting of some algebraic structure which reflects aspects of the un-
derlying system (such as semantic structure or proof structure). They can be
used to reason about a variety of program properties [46], including IFC as first
suggested by Petricek, Orchard, and Mycroft [52].

Most of the prior work on graded type theories for IFC is in the effect style
(e.g., Abdadi et al.’s DCC [I]). The idea is to prevent information leaks by
constraining the outputs that can be produced by a given program. This is often
implemented using a graded monad to track the flow of information with security
labels as the grades. However, there is also a less explored dual approach, which
achieves IFC in the coeffect style via a graded comonad. The idea here is to
protect information leaks by constraining the inputs that can be fed to a given
program. In this style, grades are typically drawn from a semiring (or semiring-
like structure), capturing dataflow. Prior works [21] 2 [I8 43] have proposed
instantiating a semiring-graded system with a lattice of security labels to capture
information-flow for the purpose of data security properties. We examine this use
case in detail and propose that there is a more general class of semirings which



On Graded Coeffect Types for Information-Flow Control 3

can be used for IFC and which enforce the crucial non-interference property: that
less privileged observers cannot distinguish the dependence of a computation on
more privileged inputs.

We begin with a tour through the history and development of coeffect sys-
tems, starting with the work of Alan Mycroft and his students, joining together
various threads from the literature culminating in the general graded types
paradigm (Section . From this historical narrative, we define a core graded
coeffect calculus, called GRBASE, based on the structural coeffect systems of
Petricek, Orchard, and Mycroft [53], but reformulated within the context of the
last decade of developments in graded types (Section . This captures the es-
sential core of many systems in the literature discussed in Section [2} We then
define a logical-relation-based semantic model for GRBASE and use this to prove
non-interference for a general class of pre-ordered semirings with some additional
axioms which we call non-interfering semirings (Section. This serves to clarify
a minimal set of constraints that need to hold of a coeffect analysis to enforce
the key IFC property of non-interference. Our result is formalised in Agdaﬁ The
mechanisation covers the entire relational model for the graded type system and
its non-interference result, but admits as postulates some basic results about
substitution and strong normalisation that have been proved elsewhere in the
literature for such systems.

Section [b| demonstrates an in-depth practical example of coeffect-based IFC
using the functional programming language Granuleﬂ where we have imple-
mented these ideas. Section [6] concludes with a discussion of the related work of
other approaches to information-flow typing and graded types. We also consider
extensions to declassification (controlled leakage), outside of our non-interference
result, and how graded types can be used to control information leakage.

2 The Road to Graded Coeffects

We define in Section [3| a core calculus with a graded type system for tracking
coeffects given by a pre-ordered semiring structure. This system has arisen in-
dependently in a few forms and from a few different starting points, but, most
notably for this festschrift, first due to Alan Mycroft and his students. We begin
by giving a recap of the history and an overview of this space.

2.1 Coeffects as Dual to Effect Systems

In a 2013 ICALP paper Coeffects: Unified static analysis of context-dependence,
Petricek, Orchard, and Mycroft initiated a programme of work studying a general
type-based framework for analysis of context dependence in programs [52].

The central idea is that there is a sensible dualisation of the type-and-effect
systems (hereafter effect systems) of Gifford and Lucassen [24] [36]. This dualisa-
tion yields a useful and flexible system for tracking program properties relating

4 https://github.com/granule-project/security-coeffects-mechanization
® https://github.com/granule-project/granule
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to how a program uses its context. The work builds on the close connections
between effect systems and monads, fleshed out by Wadler and Thiemann [67]:
for an effect judgment I' F ¢ : A, F describing that program ¢ produces (at most)
side effects F' (where F' is a member of a semilattice) then there is a translation
to an equivalent judgment in a monadic meta-language [I'] Fas [t] : Mr[A]
where the monadic type constructor M is annotated by the effect information
F'. The following two rules capture the composition of side effectful computations
whilst concordantly composing the effect information in types:

F"MtIA F}—MtltMFA F7{E:A|—Mt22MgB

RET BIND
I'bFyretunt: M)A I'bFayrdox < ty;ts : MpyagB

Later work formalises this “annotated” monad structure Mg as the more general
notion of graded monads [33], B0]. (Mycroft et al. later generalised this further,
considering in depth the paradigm of capturing effects via grading [44]).

From this starting point of the relationship between effects and monads, the
ICALP 2013 paper sought to find the corresponding annotated type system for
comonads, which were gaining in popularity for structuring notions of context
dependence in semantics [62] [14], computational logic [12] [I1, 7] (by former PhD
students of Alan), and programming [60} [6T] [49] 48], amongst others.

The result of that paper is a general type-and-coeffect system (hereafter
coeffect system) with judgments of the form [52]:

C°THt: A

capturing that for a program ¢ of type A, alongside the usual free variables I,
the program also requires (at least) the ‘context’ S (with C' merely representing
a syntactical anchor for the comonadic denotational model) where S is drawn
from a lattice S with additional monoid structure (®, 1)E| Key typing rules:

r:Ael CENS(Dyw: A)Ft: B

Cirrz A CRrragt. 54 B P°

CEINFt1:C5A— B CTI'Fiy: AAPP
CRV(S@T)F F tl t2 : B

The (VAR) rule describes that using a variable amounts to some usage of the
context denoted by the 1 € § element. Reading top-down, the (ABS) rule says
that the context-dependence of a function’s body can be split between the ‘call
site’ by capturing the dependence S on the function arrow (written C5A —
B) leaving the remaining requirements R to be made at the ‘definition site’.
Reading bottom-up, the (ABS) says that the context available to a function is a
combination of the current context R and the context provided by the function
argument S. The (APP) rule then shows how these requirements / capabilities

5 The ICALP 2013 paper actually uses @ and e as its syntax for the monoidal part of
the coeffect algebra structure, but thinking of this monoid in multiplicative terms
fits better with the literature that came after.
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come together when applying a function, using the monoidal ® to combine the
context T of the argument t; with the requirements S of the function ¢;.

The paper gives various examples, including one using sets of labels to capture
resources required from the context, e.g., hardware devices or global variables,
with & = P(resources). The usual lattice of sets and monoid ® = U and 1 =0
is used with a primitive for accessing resources C172}I" -7a : p. For example:

¢{7eps,7compass} 1 (Xc. locate 7gps ¢) 7compass : ...

An interactive web-based essay by Tomas Petricek (Alan’s student at the time)
provides a playground exploring this example and othersm and Petricek’s PhD
thesis discusses ‘systems capabilities as coeffects’ in more detail [51].

This line of work has been picked up by several practical programming lan-
guages. One example of this is Hack, via its contexts and capabilities [59].

The paper then develops a categorical semantics which introduces the notion
of indexed comonads which, in modern terminology, are known as graded comon-
ads [21], dualising graded monads but with additional structure for managing
the more complex structure of contexts.

A key aspect of the paper is that the system is general, parameterised by
a coeffect algebra S which can then be instantiated to various interesting and
useful analyses. The paper includes an example based on whether the entire
free variable context I" is used (live) or is unused (dead). The paper concludes
by pointing out that it would be more useful in that case to track liveness of
variables (whether they are ‘relevant’) on a per variable basis rather than per
context and suggests the notion of a ‘structural’ coeffect system where coeffect
annotations are formed out of finite products matching the structure of the
context, e.g., with abstraction rule:

CEXS(Ix:A)t:B B
CEI'+- X xt:CSA— B

These structural coeffects (which the present paper builds on in Section |3)) then
lend themselves to analysing how variables are used, separately to wider notions
of context dependence which were the main focus of the ICALP 2013 paper.
In this teasing of the more fine-grained structural coeffect system, the authors
suggested that such a system could be used for tracking secure information flow
along the lines of DCC [1], the topic of the present paper.

A follow-up paper at ICFP 2014, titled Coeffects: A calculus of context-
dependent computation also by Petricek, Orchard, and Mycroft, builds a unified
system in which both the ICALP 2013 ‘flat’ (whole context) coeffects and struc-
tural (per variable) coeffects can be expressed as instances of a single system via
a coeffect structure akin to a (shape-indexed) module over a semiring. We do not
replay the full generality of the system here but briefly overview a subset spe-
cialised to the subclass of coeffect structures which encode structural coeffects.
In this approach judgments have the form:

TeRFt: A

" https://tomasp.net/coeffects/
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where R is a vector (ry,...,r,) of coeffect annotations r; € R drawn from a
pre-ordered semiringﬁ where n = |I'], i.e., the structure and shape of R matches

the context. Selected key typing rules are then:

z:Aa(l) F x: AVAR

Iyx: AaRx(r) l—t:BABS INoeRkFt;: AL B TeSkt: A

m APP
I'eRFMzt: AL B I, I3eRx(r«S) Ftity: B
I,y:B,z:B,I5@Rx{(s,t)xQ Ft: A CONTR I'eRFt: A WEAK
IN,x:B, IaRx(s+t)xQ F [z/z][x/y]t : A I''x:BaRx{(0)Ft: A

The (VAR) rule now annotates a singleton context with a singleton vector using
the multiplicative unit 1 € R of the semiring to denote usage. The (ABS) splits
off the coeffect for the variable being bound, where the syntax is now A — B
for a function which uses its input according to r (rather than C"A — B as
in the ICALP 2013 paper). The (APP) rule composes two disjoint contexts but
scales the requirements of S for the argument by the coeffect of the function
r, where the semiring’s multiplication is lifted to a scalar multiplication of a
coeffect vector by a coeffect. Lastly, the (CONTR) and (WEAK) rules provide
contraction and weakening using the additive part of the semiring. A somewhat
similar approach will be used and explained in more detail in the present paper.

2.2 Coeffects as a generalisation of Bounded Linear Logic

Independently to Petricek, Orchard, and Mycroft’s ICALP 2013 paper, two very
similar systems arose independently of each other in ESOP 2014 (by Ghica and
Smith [23] and Brunel et al. [15]), coming from a different angle: generalising
bounded linear logic (BLL), which is itself is a generalisation of linear logic.
Linear logic is a logic of resources in which propositions must be used exactly
once, i.e., they cannot be discarded and cannot be copied [25]. A corresponding
system of linear types can then be used to control data as a resource [66]; for
example, to enforce stateful protocols, e.g., that a file handle is opened, read
from and written to, then closed once and never accessed again after [68]. Non-
linearity is provided by the !-modality (pronounced ‘of course’ or ‘bang’) which
gives a binary view, delineating linear and non-linear propositions or values.
Bounded Linear Logic (BLL) refines the binary view, replacing ! with a family
of indexed modal operators !, where the index r provides an upper bound on
usage [20], e.g., |44 represents a value A which may be used up to 4 times.

8 In fact, the ICFP 2014 paper refers to this as the coeffect scalar structure R which
comprises a pair of monoids with distributive laws between them but does not men-
tion the need for 0 (called ign in ICFP 2014) to be absorbing or that + is commuta-
tive, however the paper points to the proofs in the thesis of Orchard which explains
additional axioms which are required of the coeffect scalar in order for subject re-
duction/type preservation to hold [47] albeit on a slightly different presentation of
the structure. The modern rendering in terms of semiring is more clear.
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Dal Lago and Gaboardi applied linear typing to PCF with BLL-style modal-
ities indexed by usage bounds which could depend on type-level natural number
indices [34], 20]. Observing that the natural number terms form a semiring and
the system can be usefully generalised to arbitrary semirings, this approach was
generalised by Brunel, Gaboardi, Mazza, and Zdancewic in an ESOP 2014 paper
A Core Quantitative Coeffect Calculus [I5]. The work was developed indepen-
dently of the work on coeffects, but the authors discovered the terminology of
coeffects towards the end of their projectﬂ and so helpfully worked that termi-
nology into their description of the system.

The core system has typing contexts which can contain both linear variables
and non-linear variables, which are marked with an element of a semiring. A
dual-calculus style presentation is possible, splitting the contexts, though the
ESOP 2014 work combined these into a single context syntax. A family of modal
operators [.A where r is drawn from the semiring is then used to internalise
the coeffect information, with the following subset of its typing rules:

I''xz:A+t:B I'Ft1:A—oB AFRty: A
ci Az A Traet:A<B” I+AFtity: B
F,x:Al—m:Ader I'-t: A o
Nz:[AhFax: A r+«F[t]:0.A

app

The variable and abstraction rules are standard for linear type systems. The
application rule is also standard but includes a context addition operation that
is undefined if the contexts are not disjoint in their linear assumptions and
which adds together (using the semiring addition) the coeffects of any non-linear
variable assumptions that appear in both contexts. The ‘dereliction’ rule (der)
links linearity with coeffects, marking a linear assumption with 1 of the semiring.
The ‘promotion’ rule (pr) then introduces a coeffect-graded modality at grade
r, requiring that the inputs are also scaled by r (and implicitly that the context
contains no linear variables).

Independently to the work of Brunel et al., another paper appeared at the
very same ESOP (2014) proposing essentially the same idea: Ghica and Smith
provided a generalisation of BLL in their paper Bounded Linear Types in a
Resource Semiring [23]. Whilst they explicitly generalise BLL, the calculus pre-
sented does not provide a base notion of linearity. Instead, similarly to structural
coeffects, every assumption is associated with an element of a semiring and the
function type always has a semiring element associated with its input (in their
case written as (J.A) — B for semiring element J, calling back to the linear
logic roots at least via the appearance of —o). The resulting system has very
similar expressivity and power to that of Brunel et al., with 1 of the semiring
denoting usage, 0 denoting discarding, multiplication for composition and addi-
tion for contraction. Ghica and Smith give a particularly interesting use case for
coeffects for capturing ‘hardware schedules’ in circuit synthesis.

9 Personal communication.
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2.3 The Graded Types Paradigm and Further Systems

In summary, the notion of coeffects as a semiring (or semiring-like) type-based
analysis of how a program depends on its variables arose independently as both
a generalisation of effects (ICALP 2013, 2014) and a generalisation of bounded
linear logic (ESOP 2014, two independent papers).

At ICFP 2016, Gaboardi et al. went on to generalise the ESOP 2014 paper of
Brunel et al., using now the terminology of grading, providing a linear logic with
a graded comonadic modality (essentially like the system of Brunel et al.) but
also adding graded monads for tracking effects and (graded) distributive laws
for capturing effect-coeffect interaction [21]. One of the examples given in their
work is a graded comonad with a two-point lattice of ‘high’ and ‘low’ security
markers for tracking security as a coeffect. This is the first such instance actually
showing the details of using coeffects for security, following the cursory mention
by Petricek, Orchard, and Mycroft in ICALP 2013. However, the example was
not developed to the point of proving non-interference, though the categorical
semantics captures the idea implicitly.

Following this calculus with graded monads and comonads, Orchard et al.
presented an implementation of the Gaboardi et al.’s work as a functional pro-
gramming language, called Granule, extended with polymorphism and GADTs [46].
The language has served as a research vehicle for exploring the applications of
graded type systems, including for example program synthesis [30] B82] [31] and
capturing uniqueness and borrowing for mutable structures [40] [38]. The paper
proposes the general paradigm of graded modal types, encompassing both graded
comonadic types for coeffects, graded monadic types for effects, and suggesting
there may be other flavours of graded modality. The general paradigm is that

“graded modal types carry information about the semantic structure
of programs, and along with a suitably expressive type system, provide
a mechanism for specifying and verifying properties not captured by
existing type systems” [46].

Various other works have since proposed related general systems or have deployed
such systems. For example, Abel and Bernardy give a general characterisation
of semiring-graded type systems (similar to structural coffects but also with an
added graded modality) and study in detail its semantic models [2]. They con-
sider information-flow control as a key application and prove a non-interference
result, which we discuss in this paper in more detail in Section

As a notable application of graded types, GHC Haskell now provides linear
types as an extension, the implementation of which uses a structural coeffect
system, providing a way to describe linear typing via a {0,1,w} (“none, one,
tons”) semiring [8].

Lastly, coeffect-like grading has also been a subject of much study in the con-
text of dependent types. Notably, McBride proposed a dependent type theory
with coeffects for tracking whether values are used or not as a way of reconciling
linear and dependent types [4I]. The system was refined by Atkey under the
name Quantitative Type Theory (QTT) [6], which has then become the basis
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for the Idris 2 implementation [I3]. Several other dependent type systems have
then included graded types for capturing coeffects, including GRAD [I§], Graded
Modal Dependent Type Theory (GrTT) [43], and a similar fully formalised ver-
sion by Abel et al. with universes and erasure properties [3].

Our focus here is on simple and polymorphic type systems, rather than de-
pendent type theories; applying the ideas here to a more powerful dependent
type theory is further work.

2.4 Linear Base versus Graded Base

As seen, there has been a proliferation in graded type systems, particularly
focusing on coeffects, in the last decade. A common theme is the use of a (pre-
ordered) semiring to structure the coeffect analysis. There are two dominant
styles of system that have emerged in this vein: those which take linear logic as
a basis and those which do not. In the former case (“linear base”), contexts com-
prise a mixture of linear assumptions and graded assumptions, function types
are linear functions —o, and a graded modality [, internalises the grading from
the context. Such systems include the ESOP 2014 system of Brunel et al. [I5],
the ICFP 2016 system of Gaboardi et al. [2I], and Granule [46]. In the latter
case (“graded base”), coeffect information is pervasive: every typing assumption
has a grade, function types are annotated with a grade describing the input use,
and the inclusion of a graded modality is optional (though useful for flexibility).
Such systems include the original coeffect systems of Petricek, Orchard, and
Myecroft [52] [47], the ESOP 2014 system of Ghica and Smith [23], the general
system of Abel and Bernardy [2], and the dependent type systems mentioned
above. Recent theoretical work by Vollmer et al. has illustrated the relation-
ship between these two styles more closely, by showing that there is a mutual
embedding between the two approaches in their system [63].

The main differences between the types and contexts of linear vs. graded
base systems can be summarised as follows:

A:=0,A|A—B Ax=0,A|A"—- B
=0 |Lax:A|Tx:[A], r:=0|Lz: A
(linear base) (graded base)

Linear base has two kinds of assumptions (linear and graded) and a linear arrow;
graded base has one kind of assumption (graded) with a graded function arrow.

It has recently been shown that both styles are equally expressive, i.e. any
linear base term can be emulated in graded base and vice versa [35]. In this
work, we continue in the graded base style, used in the early coeffect systems,
using this as our basis for a core calculus in which we can then study IFC via
coeffects.
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3 A Core Graded Coeffect Calculus

Following the approaches described in the previous section, we focus on GRBASE,
a minimal core calculus in the style of Petricek, Orchard, and Mycroft’s struc-
tural coeffect system [53], but using the language and terminology of grades.
We thus describe our system as having graded coeffects structured by a pre-
ordered semiring: grades are associated to every free variable in the context and
track how it is used, with a graded function type to describe how the input
is used. Thus there is no base notion of linearity as found in systems building
directly from the linear logic tradition (i.e., [15} 21]), but we do include explicit
graded modalities for internalising grades into types separately to functions as
this allows more flexibility. As discussed in the previous section this style of
core calculus is becoming routine and appears in various works now in slightly
different forms [53] 4T, 8] 18], 23], 2, [69].

We supplement the presentation of GRBASE with real examples written in
the Granule programming language. (Real, in the sense that they are embedded
in the source of this paper such that they can be type checked by the Granule sys-
tem.) As mentioned in Section Granule, by default, represents a linear base
system. However, it can be run in graded base mode via the language GradedBase
pragma, which we are doing for this paper, as this makes Granule a strict super-
set of GRBASE. Granule features a rich pattern language and equational-style
function definitions with syntax similar to Haskell’s.

3.1 Syntax and Typing

The syntax of GRBASE is essentially that of the A-calculus extended with a
graded necessity modality and products (along with their unit), and booleans
(for control flow). The syntax of types is:

A:= AB|Unit|B|A" - B |04 (types)

Types comprise products, units, booleans, graded functions A™ — B, and a
graded modality [0, A. The calculus is parameterised by a pre-ordered semiring
(R,-,1,4,0,<) where - and 4 are monotonic with respect to the pre-order <.
For function types, a grade r € R is associated with the input type, describing
the usage of the input within the inhabiting function. The graded modality O, A
captures a capability to use a value typed A according to grade r € R.

The syntax of GRBASE is as follows (explained later with reference to typing):

tu= x| tyte | Azt ]| [t]|let[z] = t1inty (terms)
A-calculus graded modality
[(t1, t2) | let (z,y) =t1inta | () |let ()=t in to
products unit

|££ | tt | if t; then ty else t3

booleans
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Iz:. A-t:B

0 TooArz A Y g o 55 A
InFt:A"— B FQ}—tQ:ATA Iz: A\ T"Ft:B SSTTA
YAPP YAPP X
ThtrIoFhts:B Tz AT Fi:B RO
F"t:A TyP Fl}—tliE‘TA FQ,ﬁZTA'—tQZBTBoE
— 1Y Y X HELIM
P Tr[:0A O T+ hFletfr] = hinty: B

FlFtliA FQthiB

TYPAIRINTRO
F1+F2F(t17t2)2A®B

F1|_t12A1®A2 F27$:A17y:A2|_t2:B

TyYPAIRELIM
It +15F let (I,y):tl int: B

——————— TYUNITINTRO hibh:Unt InFk:B TyUNiTELIM
0-T'F () Unit TN IitlaFlet()=tint:: B 8

0TFww B VTR GFFgr B L YEALSE
INkFt:B Ikt A IokFt3: A r<l1

—— TYIFTHENELSE
(T’~F1) + 15 Fiftithentoelsets : A

Fig.1: Typing rules for GRBASE. Regarding the direction of the ordering in
APPROX, note Remark

Typing is via judgments I" F ¢ : A, assigning a type A to term t under the
context I'. Every free variable type assumption in I" has an associated semiring
element called its grade:

rs=0|Lz: A

The order of assumptions in contexts is not relevant, i.e., contexts can be arbi-
trarily reordered.

Figure [I] provides the typing rules. The VAR rule accounts for the use of a
particular variable, annotated via the grade 1 € R meaning it has been used.
The remaining variables in the context are all graded 0, provided by scaling I" by
0 and the semiring property that 0 is absorbing. Scalar multiplication is defined:

Definition 1 (Scalar context multiplication). For all r, I' then r-I" is
defined by induction on I':

r

D=0
r-(Nz:s A)=(r-T)yz:. s A

In the conclusion of the application rule we also see the use of scalar context
multiplication where r - I'; scales the grades of I's by r to account for the usage
of the argument ¢o by the function ¢;.
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The ABS rule is standard modulo capturing of the assumption’s grade r onto
the function arrow (the latent coeffect [53]). The APP rule shows a key principle of
combining the typing contexts for subterms using the contert addition operation
I' + I'" which is used in the typing rules any time the contexts of two subterms
need to be combined, applying semiring addition on the grades of variables
occurring in each context:

Definition 2 (Pointwise context addition). For all I'1, Iy of the same shape
(where the shape of a context is the list of variable-type assumptions), context
addition is defined recursively as:

(Lz: A)+ (I x s A= (T +1"),2 105 A

Ezample 1. A classic example is the semiring of natural numbers N with the
multiplicative and additive parts provided by multiplication and addition on
naturals. Taking the ordering to be equality (i.e. < is defined as =), we obtain
an analysis of exact usage, meaning that, the graded modalities ‘count’ how
many times, exactly, a variable is referenced.

For example, the following typing derivation fragment shows the role of mul-
tiplicative scaling to account for how many times a variable is used:

DEAy.(y,y): (A2 A)? - (AR A) @ (AR A) zoAF(z,2): A® A

iy A Qy.(y,9) (z,2) : (AR A) @ (AR A)
DF Xz Oy (v, 9) (z,2) : A* 5 (AR A) @ (AR A)

ApPpP

ABS

Thus the type of the innermost function A\y.(y,y) captures that its input its
used twice; the type of (z,z) captures that x is used twice; the application
(Ay.(y,v)) (z, z) therefore is typed with x graded at 4 due to multiplication.

In Granule, graded function types A” — B are written as A % r — B, where
r is of kind coeffect. This syntax is reminiscent of Linear Haskell and becomes
available in Granule through the language GradedBase pragma.

We capture an example in Granule similar to the above (but S-reduced) as
the following polymorphic function:

quad : V {a : Type}. a % 4 — ((a, a), (a, a))
quad x = ((x, x), (x, x)) -- o0.k.

The next (non)example has an incorrect type, showing that for discrete naturals,
we cannot over-approximate the usage:

quad_bad : V {a : Type}. a % 5 — ((a, a), (a, a))
quad_bad x = ((x, x), (x, x)) -- type error!

Graded modalities are introduced by ‘promotion’ (TYPR), scaling graded as-
sumptions in I" via scalar multiplication. Graded modalities are eliminated by
let [] = t in t2 connecting the graded modal box at r in the type of #; with an
assumption of grade r in the free variable context of .
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Ezample 2. The grade on function types is rather coarse grained: it summarises
how the entire input is used. In the case of a compound type, e.g. products, we
may want more fine-grained information about how each subpart is used, for
which we can use the graded modality. For example, to define first projection on
pairs we use the graded modality at grade 0 for the unused second component:

VAR 7 VAR
y:lEloBl—y:DOB x:lA,y:OBl—x:A
i A®OBFz: AOyB ca Ay OoBFlet)y]=yinz: A poE
0 0 Y 0 ) Y
2 A®OgBFlet (z,y) =z inlet[y'] =yinz: A

Ok Xzlet (z,9) =z inlet[y]| = yinz : (A®OyB)" — A A

PAIRE

BS

Thus, we first eliminate the incoming product value z into its components x
and y which both get used once. The component y however is graded modal, of
type Oy B, and is eliminated to a graded assumption y’ ;o B which can thus be
discarded due to the 0 grade.

In Granule, sticking to the constructs supported by GRBASE, we would write
the following equivalent function:

fst’ : V{ab : Type} . (a, b [0]) % 1 — a
fst’ = \z — let (x, y) = z in let [y’] =y in x

Granule provides additional syntactic sugar whereby elimination of graded modal-
ities can be folded into pattern matching. Furthermore, we can elide the grade
on an arrow if it is 1. A more idiomatic Granule equivalent to the above is thus:

fst : V {a b : Type}. (a, b [0]) — a
fst (a, [b]) = a

In the case of if-then-else, we introduce an additional grade r to scale the
incoming context of ¢ with the requirement that the grade » must approximate 1
(written r < 1) as computing a conditional incurs a usage to inspect the boolean.
Once control flow is in the picture, approximation becomes important.

Ezxample 3. A useful semiring is that of intervals over another semiring, e.g., the
semiring of natural numbers intervals, formed by pairs N x N, written here as
r..s in which s is always greater than or equal r under the normal ordering for
N. The semiring operations are then those of interval arithmetic, with ordering:

r1..ry < 81..82 =11 SN S1 A 8o SN T2

Thus the interval r1..r5 approximates s;..so if it is larger in conventional natural
number terms (Remark discusses the direction of the ordering and why it looks
opposite to how we expect it for numbers). The following shows an example of
the typing for conditionals using this semiring and approximation (eliding the
typing of the ‘else’ branch):

VAR
Yy A,znoAFy: A
VAR APPROX
r1BFz:B Y1 Az ARy A r.r <1.1

T B,y Az:g1 A ifxthenyelsez : A

IF
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Approximation means that we can approximate the grades for both x and y to
be 0..1, capturing that they are used either 0 or 1 times in this computation.

The typing of the conditional requires that r..r < 1..1 (since 1 = 1..1 in this
semiring) and thus we ensure that the usage of z, to decide the conditional, is
recorded faithfully.

Granule provides a range of builtin semirings, including;:
Nat Discrete naturals, denoting exact usage.

Sec  Security levels Lo and Hi, similar to the lattice used in this paper
(defined soon in Definition [3).

Q Rationals for sensitivity analyses (somewhat emulating
Gaboardi et al.’s system for differential privacy [20]).

Semirings can also be built from other data or combined using the following
higher-order operations:

Set - Sets of user-defined labels, where * = U and + = nN.
Set0p - Sets of user-defined labels, where * = N and + = U.
Interval - Lower and upper bounds on usage.

- x - Product of two semirings, e.g. one to three

usages at level Hi is provided by a product
(1..3, Hi) : Interval Nat X Sec.

Set and SetOp present a set-based lattice coeffect over user-defined labels. Inter-
vals can be used to give lower and upper bounds; and products of coeffects allow
the combination of coeffects via pointwise products.

Granule supports grade polymorphism, but also polymorphism on the semi-
ring itself, allowing general definitions that can be instantiated at arbitrary semi-
rings. Granule introduced semiring-polymorphism, which is appearing now in
other, similar systems; Bianchini et al. adapt graded coeffects to an Object-
Oriented setting, supporting different semirings within a single system and user-
defined semirings via inheritance [9,[10]. In Granule, new semirings can currently
only be defined by extending the implementation. Exposing an interface for user-
defined semirings, akin to Bianchini et al., is further work.

Granule generalises GRBASE to include sum types and arbitrary, user-defined
algebraic data types. We present GRBASE as a simple core here, with just
booleans for control flow to focus on the essential details for the model and
non-interference result of Section [l

Since lattices are semirings, we can consider instantiating GRBASE with lat-
tices, where the elements of the lattice provide some kind of labeling on data.
Such a semiring has been proposed as a way to capture IFC, with the grades as
security levels [2T], 2], 18] 43]. We focus on a 2-point lattice for now:

Definition 3 (2-point semiring of security levels [21]). Let £ := {H, L} be
a set of abstract labels, denoting ‘high’ and ‘low’ security permissions respectively,
with a lattice formed by the total order with L < H. This lattice is a semiring
with multiplicative structure - :==V and 1 := L and additive + := A and 0 := H.
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The additive part means contraction serves to gives us the most permissive label
(the greatest-lower bound) to avoid passing secrets to the public domain, e.g.,:

Iz:[Alykt:B I'z:[AL+t:B 1)
(' +1"),z:[ALF (t,t): BB’

since H+L =HAL =L, i.e., x must be labelled as L in the concluding term
since the subterm ¢’ uses z in a low-security way.

We argue in Section [ that a lattice is more general than what is needed to
establish non-interference; instead, there is an intermediate point between semi-
rings and lattices which provides enough structure to guarantee non-interference.

Remark 1 (On the direction of the ordering). Note that since we have 1 = L,
0 = H and L < H, we have 1 < 0. While this is unusual vis & vis the coeffect
literature [46], the ordering turns out to be an arbitrary choice. In this work we
chose the option that is common in the security literature (see e.g. [I]), as it
avoids having ‘high less than low’” (H < L).

By the ordering and the semiring structure, high-security inputs H cannot
flow to low security outputs L and thus there are no typing derivations for:

Y z.[z]: AN - 0OLA YAz AN = A

In the latter, the base notion of usage at grade 1 (L) prevents us returning z.

A classic attack on data processing systems, that should also be guarded
against, is via an implicit flow, in which some form of equality checking and
control flow is used to leak information. This is known as a control flow attack.
These are avoided in GRBASE since the typing of if-then-else requires r <1.
Therefore the following is not valid:

s BFz:B H<1
z:yBFifzthenttelseff: B

IF (not valid)

Recall that 1 = L. Now, since H £ L, this derivation is not valid as the second
premise does not hold, and thus the program is rejected. This is the same solution
as employed by Abel and Bernardy [2] and Choudhury et al. [I§].

In Granule, the 2-point security semiring is given as the Sec type with con-
structor Hi for H and Lo for L. The equivalent of the above (non)example in
Granule is thus also ill-typed, written as:

leak : Bool 7 Hi — Bool
leak x = if x then True else False -- type error!

The leak function does not use the data-flow of variables to convey the input
to the output, but rather uses the information gained via the conditional to
reconstruct the input value. Since Lo is the 1 (top) element of the two-point
security level lattice, we can however type the following:

public_not : Bool % Lo — Bool
public_not b = if b then False else True
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—~—————————— SMALLSTEPBETA - SMALLSTEPBOXBETA
()\Ltl) to ~~ [tz/z]tl let [Z] = [t1] inty ~ [tl/I]tz
- SMALLSTEPPRODBETA ———————— SMALLSTEPUNITBETA
let (z,y) = (i, &) in t3 ~ [t1/2][t2/y]ts let ()=()int~t
————F——————— SMALLSTEPIFTRUE —————————— SMALLSTEPIFFALSE
if tt then t; else tz ~ # if £f then 1 else ta ~ &2
(a) B-rules
o~ 1 b~ 1]
—————— SMALLSTEPAPPLEFT - - SMALLSTEPCONGLETL
tty ~ U] b2 let[z] = tiintz ~ let[z] = ¢{int2
t o~ H t o~ 1]
- - SMALLSTEPCONGPROD - - SMALLSTEPCONGUNIT
let (z,y) =t in to ~let (z,y) =] in b2 let ) =tiintz~let ()=t int

tst

: - SMALLSTEPIFSTEP
if t then t; else t ~ if t/ then ¢ else to

(b) Congruence rules

Fig. 2: Operational semantics for GRBASE

We can also allow secret inputs to flow to secret outputs, e.g., as:

secret_not : Bool 7 Hi — Bool [Hi]
secret_not b = [if b then False else True]

Crucially here, the promotion on the outside of the conditional means that all
the variable usage inside is scaled by Hi, which is the absorbing 0 element of the
semiring, and thus the input here can be typed with Hi grade.

The original work on Granule introduced a different lattice for security levels,
which did not prevent control flow attacks [46, Def 4.2]. This has since been
removed from the language, replaced by the approach described in this paper
(see, e.g., work by Hughes and Orchard on program synthesis from graded types
which uses the above Sec semiring in Granule [31]).

3.2 Operational Semantics

Figure [2| gives the operational semantics for GRBASE, which is standard and
call-by-name, with the most interesting case being graded modal elimination.

A key property of the calculus is that of substitution admissibility, which is
then used to establish syntactic type safety.

Lemma 1 (Admissibility of substitution). If [T+t : A and I,z : 1 AF
t2 : B then Fl + ’I"FQ - [tl/iC]tQ : B.

Proposition 1 (Syntactic type safety). If I'1 = t; : A then either t; is a
value or ty ~ t{ with I'1 - t] : A.

Other models have been proposed for capturing soundness of grading with re-
gards an operational model, e.g., the heap semantics of GRAD [I8], also used by
Marshall et al. [38], and the abstract machine of Abel and Bernardy [2]. Our focus
here (and next) is however on a relational model to establish non-interference.
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4 Semantic Model and Non-Interfering Coeffects

We define the semantics of types by building a logical relation model following
Rajani et al. [55]. The key difference from the work of Rajani et al. is that
our calculus is call-by-name rather than call-by-value, and performs a coeffect-
based rather than an effect-based security analysis. Following their approach,
the semantic model is split into two relations: a unary relation and a binary
relation, the latter of which is key to relating terms based on grades and with
relation to an observer (who has some security level).

The unary relation is fairly straightforward; it is only required to interpret
secret (and thus potentially unrelated terms) in the two executions. The type-
indexed family [A]y, defines the unary value interpretation as the set of values
(irreducible terms) that inhabit the type A. Similarly, [A]e defines the unary
expression interpretation as the set of expressions (reducible terms) that inhabit
the type A. Formally, [A]y, and [A]¢ are defined in Figureas mutually inductive
definitions. For the value interpretation, we only explain the function and the
graded types here, as the other cases are self explanatory. For the function type,
A® — B, the values inhabiting its interpretation are lambda terms Az.t where
the substitution of any term ¢ into the body is in the interpretation of the
expression relation at the result type (due to the call-by-name semantics of
our language). The interpretation of the graded modal type O, A is the set of
terms which are the promotions of terms in the interpretation A. Note that,
since the purpose of the grade r is to relate two values of type A, the unary
relation completely ignores the grade. The importance of grades only shows up
in the binary relation (as explained below). Finally, the [I'] relation defines an
interpretation of the context I' as a set of maps from variables to expressions
(written as ) that can be substituted for each variable.

The binary relation (Figure [4]) formalises the key security requirements with
respect to grades. Like the unary, the binary relation is defined for values and
expressions. However, the key difference is that the binary interpretation of a
type is a set of pairs of terms, as opposed to just a set of terms as in the unary

(expression) [Ale ={t | t~"v = wvelA}}
(value) [B]y = {tt,ff}
[Unit]y = {1}

[A® Bly = {(t1,t2) | 1 € [A]lv A t2 € [B]v}
[A° = Bly = {z.t | (V. [t'] € [O.4]e = [t'/z]t € [Ble)
O Aly ={[t] | ¢ € [Ale}
(context) M={y|zwAecl A [y(x) €[04}

Fig. 3: Unary value, expression and context relations
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(expression) [AJE™ ={(ti, ) |1 ~" 11 A fo~"1v = (v, )€ [A]$"}
(value) [B]3" = {(tt,tt), (££,££)}
[Unit]3™ = {(1,1)}
[A® BIY" = {((tr, &), (41, t2)) | (ta,t1) € [A]S" A (t2, 85) € [B]S"
(

[4° = BIY™ = {(Az.ta, Ay.t2) | (v8,¢.([t], [¢]) € [O.A]E" =
([t/2]tr, [t'/y]tz) € [BIE")
A(VE[t] € [O.Ale = [t/z]t € [Ble)
A(VE[t] € [O.Ale = [t/ylt2 € [Ble) }

{ {([t), [t2]) | (11, t2) € [A]2™} when 1 < adv
(), [&2]) | &2 €

[Ale A2 € [A]le}  when —(r < adv)
(context) [T]*" ={(y1,72) |2: A€T A [y1(2),72(2)] € [0, AJ2"

[0, 41"

Fig. 4: Binary expression, value and context relations

case. The binary interpretation is also parameterised by a grade representing the
adversary level adv against whom we desire indistinguishability of secrets.

We explain the binary expression relation first: [A]2%" relates two expressions
of type A when the values obtained by reducing them can be related under the
binary value interpretation at the same type. Since we only relate the resulting
values when both the expressions terminate, our logical relation internalises what
is known as ‘termination-insensitive non-interference’ [64]. We believe that our
current development can be generalised to a termination sensitive version of
non-interference by additionally proving co-termination of the two executions.
We leave that part as an interesting direction for future work.

For the binary value interpretation ([A]%%), like in the unary case, we focus
only on the function and the graded types here. The interpretation of the function
type A® — B relates two A-expressions, when given related expressions at an
input type (Os;A) the bodies of the A-expression with the substitutions should
be related at the output type B. The additional unary clauses are required for
technical purposes (as we desire an invariant that any two terms that are related
by the binary relation must also be separately in the unary relation at the same
type). The value interpretation for the graded type [0, A is now the most critical
point in the model for security. It relates two promoted terms [t] and [t] as
follows: if the grade r is less than or equal to the adversary level adv (i.e.,
r < adv) then #; and ¢, must be related by the binary expression relation at A,
otherwise t; and separately t, are just in the unary expression interpretation
of A and thus cannot be distinguished; an adversary who is at the low security
level (L) cannot distinguish values which are designated as secret (at the high
security level) by being in inside a H-graded box, since —(H < L).
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Finally, [ defines the binary relation for relating substitutions in the
two runs, reusing the interpretation of the graded modality to capture grading.

4.1 Fundamental Theorems and Non-Interference

A key property of our model is the so-called ‘fundamental theorem’ which con-
nects the syntactic type system with its semantic interpretation: any expression
subject to a syntactic typing is member of the semantic typing. We define a
unary (Theorem 1)) and a binary (Theorem [2)) version of the fundamental theo-
rem, corresponding to the two logical relations.

Theorem 1 (Unary fundamental theorem). For all well-typed terms I' F
t: A ify €[] then v t € [A]le (where the v t applies a substitution of the
mapping from variables to terms given by ).

Proof. (utheorem, UnaryFundamentalTheorem.agda) By induction on typing.

The unary fundamental theorem says that if ¢ is a term of type A in a context
I', and + is a unary substitution in the interpretation of I" then ~ ¢ is in the
unary expression relation at the type A.

The binary fundamental theorem instead leverages the binary relation, which
is where we get the interaction between an external observer (the ‘adversary’)
and the grading. It is at this stage that we need additional structure to enable
the binary fundamental lemma as the crucial step to non-interference. This addi-
tional structure delineates a subclass of semirings which we call non-interfering:

Definition 4 (Non-interfering semiring). A non-interfering semiring R is
a pre-ordered semiring with four additional axioms:

lax idempotencﬂ of multiplication: r -r <r
antisymmetry: (r < s)A(s<r) = r=s

— multiplicative unit is minimal (bottom): 1 <r
additive unit is mazimal (top): r <0

Proposition 2 (Derived properties). For a non-interfering semiring, then
we have the following derived properties:

— (decreasing + ) If r1 < ry then (11 +8) <19
(which follows from O being the top and the usual semiring properties of +
monotonicity and 0 being the additive unit).

— (increasing ) If r1 <1y thenry < (s-72) and r1 < (rg - $)
(which follows from 1 being the bottom and the usual semiring properties of
- monotonicity and 1 being the multiplicative unit).

From these two properties we can conversely derive the minimality of 1 and the
mazximality of 0 respectively.

10 There seems to be no universally accepted name for this property. Weak idempotence
is used in [] to denote the property r* = r? hence we opted for the modifier laz.
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Proposition 3 (2-point security lattice is non-interfering). The semiring
induced by the lattice on L = {H, L} with L < H, where 0 = Hand 1 = L, is
non-interfering, with lax idempotence of multiplication trivial since - =V, with
the ordering providing antisymmetry, minimality of 1, and mazimality of 0.

We can now give the binary fundamental theorem on this subclass of semirings:

Theorem 2 (Binary fundamental theorem). For all well-typed terms I' -
t : A with a semiring R parameterising the calculus that is non interfering, if
(y1,72) € [T]* then (v1 t,v2 t) € [A]E% (where the v1 t and 2 t applies a
multi-substitution of the mapping from variables to terms given by v1 and 2 ).

The binary fundamental theorem is similar to the unary, but relates the syntactic
typing to the semantic typing according to the binary expression relation. Both
of these theorems are proved by induction on the typing derivation.

Proof. Formalised (biFundamentalTheorem, BinaryFundamentalTheorem.agda).

The theorem follows by induction over typing derivations. We sketch some
of the pertinent cases here which show where the axioms of the non-interfering
semiring are used. (Note uses of axioms are typeset in green.) The interesting
cases typically occur when incoming context has a grade that is not observable
by the adversary (i.e., some r such that —(r < adv)) but some premise requires
a context with a grade s that is observable by the adversary (i.e., some s such
that s < adv).

— (var) with typing 0- Iz : 1A+ 2 : A, and goal [A]2%.
Thus the interpretation of the context in the assumption of the theorem
provides ([t1], [t2]) € [0 A]2% with two possible cases for its meaning:

e 1 < adv and (t,t) € [A]2% satisfying the goal of the theorem.

o —(1 < adv) and thus & € [4]g Aty € [A]¢ which cannot satisfy the goal
of [A]2%. However there is a contradiction here since 1 is the bottom
element (Vr.1 < r) in a non-interfering semiring, and thus this case holds
by ex falso quod libet.

— (app) with typing It + 712 & t; & : B and premises I1 F ¢ : A” — B and
IE (o Q c A
Thus we have a context interpretation (vq1,v2) € [r- 1+ I from which
we need to derive a context (v;,7%) € [I1]*® to compute the left-hand side
t;. For every x such that x :,, A € I} and z :,, A € I; then this requires
us to map from ([t3], [ta]) € [Dry 11 AJ2% to ([t3], [ta]) € [O, AJ2% in the
interpretation of the context in order to apply induction over the first typing
premise. In the case where —=(r; 4+ 75 < adv) but r1 < adv then we have
a contradiction since r1 < adv implies r1 + 7152 < adv by the decreasing
property of + (i.e., that 0 is the top element, see Proposition. A similar use
of this property occurs in every other case where the context need splitting,
i.e., expressions comprising more than two subterms.

Hadv
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— (pr) with typing r-I' F [¢t] : 0,4 and premise I' ¢ : A.
For all z :; B € I' then context interpretation contains some ([t1], [t2]) €
[O¢ . 5 B]2% from which we need that ([t1], [t2]) € [O.B]¢™ in order to
induct on the premise.
In the case where r < adv but —(r-s < adv) and thus [0, ., B]¢" =
[Ble A ta € [B]e then we have —(s < adv) by lax idempotence of * (and
a proof by contradiction) and thus [O;B]¢% = [Bl¢ A ta € [Ble which is
satisfied by the context here.

— (if) with typing (r-I7) + I5 b if t then tyelse t3 : A and r < 1.
For all x :,, B € I and z :,, B € I then context interpretation contains
some ([tl]v [tQD € [[D(T'T1+T2)B]]gdv
In the case where —((7 - r1)+72) < adv then due to the typing requiring r <1
it follows that =7 < adv by, i.e.,

(0) =((r-m)+m)<adv (assumption)

(1) m <adv (assumption)

(2) r<1 (typing)

(3) r-r<adv-1 (monotone - (1),(2))
(4) r-r <adv (multiplicative unit (3))
(5) ((r-m)+mr)<adv (decreasing + (4))

(6) L (=-elim (0),(5))

(7) =(r < adv) (=-intro (1),(6))

Thus the incoming context interpretation suffices for the context interpreta-
tion of #.

Note that the proof does not make use of the antisymmetry property yet, which
instead arises in the final central theorem:

Theorem 3 (Non-Interference). For all judgments x :s AF t: O,q,B where
adv < s and adv # s then given O vy : A and O & vy : A then [v1/z]t = [vo/x]t.

(where = is full S-equality of terms, derived from the operational semantics).

Proof. (nonInterference, NonInterFerence.agda) We sketch some interesting
details here, but the binary fundamental theorem does most of the heavy lifting.

First, promote the typing of v; and wva, i.e., to @ F [v1] : OsA and @ F [wo] :
;A and to both apply the binary fundamental theorem, yielding:

@,0) € [0]°" = ([v1], [01]) € [O,AJ™ (2)
@.0) € [0]°" = ([va], [v2]) € [O, A" (3)
The antecedents are trivially satisfied and both , are each equivalent to:

([va], [v1]) € ([Os Ale x [O: Ale)
([ve], [v2]) € ([0 Ale x [OsAe)

by the meaning of [[J;A]2% and since adv < s from the premise and the fact that
if we had also s < adv then by antisymmetry it would follow adv = s which is
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contradicted by the premise that adv # s. We then apply the binary fundamental
theorem with ({x — v1}, {z + v2}) € [z :s A]*¥ € [z :¢ A] X [z :5 A] to obtain
([v1/2]t, [v2/2]t) € [DoanB]2%. By reflexivity of <, such that adv < adv, this
interpretation is necessarily equal to [[]B]]gd” and thus by the definition of the
binary fundamental lemma [vq/z]t and [vy/z]t reduce to terms v and v’ such
that (v,v’) € [B]%™ which necessarily means v =v'. O

Remark 2. The definition of non-interfering semirings (Defn. [4]) permits the triv-
ial, singleton semiring where 0 = 1. This semiring would appear to permit inter-
ference since it conflates 0 and 1. However, the non-interference theorem assumes
adv # s, thus the theorem holds trivially for the singleton semiring.

Another useful non-interfering semiring is the lattice of sets over labels:

Ezample 4 (Set semiring). Let T be a set of arbitrary abstract labels from which
we form a semiring Set of sets generated by P(7) (the powerset of 7) under
subset inclusion with multiplicative structure - := U with 1 := () and additive
structure + := N with 0 := T.

This gives one of the staples of secure information flow tracking [19], which
serves as the (hard-coded) basis of other information flow control systems such
as Flow Caml [58]. This semiring is also supported in Granule, where labels are
defined via a sum type with unit constructors. As a concrete example, we define
a datatype Privilege to model privileged data sources on a mobile device:

data Privilege = Camera | Contacts | Location | Microphone

myLocation : String [{Location}]
myLocation = ["051.28N 001.08E"]

myFavouriteContact : String [{Contacts}]
myFavouriteContact = ["Alice"]

We have a value myLocation that is marked as needing location access via its
graded modal type and a value myFavouriteContact that is marked as needing
access to contacts. Use of these values in other parts of the program propagates
their requirements, as shown by these two examples:

honest : String [{Contacts, Location}]
honest =
let [x] = myLocation;
[y] = myFavouriteContact
in [stringAppend x y]

dishonest : String [{Contacts}]

dishonest =
let [x] = myLocation;
[yl = myFavouriteContact
in [stringAppend x y] -- type error!

Here, honest requires the caller to provide a privilege context including at least
contacts and location access, i.e. the union of the privileges of myLocation and
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myFavouriteContact. A type error is raised for dishonest, as it fails to require
location access.

Dually to the Set semiring defined above, we have another valid (non-interfering)
semiring given by: Set®® := (R:=P(T), - :=N,1:=T,+:=U,0:=(,<:=D).
We leave its interpretation open.

4.2 Comparison with related Results in the Literature

Abel and Bernardy (2021). From Abel and Bernardy’s ‘unified view’ [2], §4.3
considers ‘informational applications’ of graded types in which “it does not
matter how many times variables are used, but rather in which context they
are used.” In this setting they restrict themselves to semirings in which the +
is the meet derived from an ordering and multiplication is the join, explicitly
mentioning that this means that multiplication is idempotent (which exceeds
the lax idempotence required by our definition). Their system is defined over a
ringoid— a semiring with a meet-semilattice- with a partial order defined by the
meet, hence providing the antisymmetry property. In §4.3.2. they assume that
everything “above 1 in the lattice is secret”, and give the 2-point H/L exam-
ple, noting “the construction generalises however to any lattice of information
modalities as specified”. Any semiring in their class of ‘informational semirings’
is non-interferind] since defining the + as the A and - as \V implies the +
is decreasing and - is increasing, and thus by Proposition [2] we have that 0 is
maximal and 1 is minimal.

Based on a relational model, they prove a non-interference theorem (Theorem
7.10) for terms of the type (in our syntax) f : A' — B’ — B showing that
[f] w b1 = [f] w bs for u € [A] and by,by € [B]. This theorem resembles ours
but is more specialised, focusing just on the 0 and 1 grades (where their result
type B can be read equivalently as [0, B).

It should be noted that their work provides a more general relational model
which can be used to consider properties beyond just non-interference. On the
other hand, the work presented here has a more general non-interference result
and defines a larger class of semirings with this property.

Abel et al. (2023). Formalising a graded modal dependent type theory, Abel
et al. (2023) provide a graded system with many features, generalising the core
calculus described here [3]. They define a semiring-based grading algebra over
a partial ordering, and requiring the existence also of a meet operation. They
consider an in-depth case study looking at erasure, in which grading is used
to track which parts of a program are not used and can be erased—a similar
property to non-interference: erasable arguments are non-interfering. They define
a subclass of grading structures, said to have a well-behaved zero (similar to what
Moon et al. [43] call a ‘quantitative semiring’) if:

— Additive is positive: if p+ ¢ = 0 then p =0 and ¢ = 0;

1 (informationalImpliesNonInterfering, Semiring.agda)
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— Meet is positive: if p A g =0 then p =0 and ¢ = 0;
— The zero-product property holds: if p- ¢ = 0 then p =0 or ¢ = 0;
— Non-triviality 0 # 1.

They point out that the second property implies that 0 is maximal. They estab-
lish a logical relations model with a fundamental theorem for erasure for those
well-behaved zero algebras (Theorem 6.10), with a thorough formalisation to
go with it. From this they establish non-interference for the 2-point semiring
and point out that more fine-grained lattices with 1 as minimal can also give
the same result. Again, this result overlaps with that here, but requiring more
structure compared to our ‘leaner’, more general approach.

5 Practical Example of Mandatory Access Control

In this section we explore a practical case study of our security coeffects in Gran-
ule. These examples take inspiration from Haskell’s Mandatory Access Control
(MAC) library [57], though the code in that paper is written in a monadic
effect-based style. We instead represent these local side-effects using Granule’s
linearly-typed session channels [39] (which are based on the GV calculus [22]).
This provides an interface for channels LChan : Protocol — Type where:

data Protocol = Send Type Protocol | Recv Type Protocol | End
with the following (non-monadic) linear functions:

send : V {a : Type, p : Protocol} . LChan (Send a p) — a — LChan p
recv : V {a : Type, p : Protocol} . LChan (Recv a p) — (a, LChan p)
forkLinear : V {p : Protocol} . (LChan p — ()) — LChan (Dual p)
close : LChan End — ()

The Dual type family is defined internally as follows:

Dual (Send a p) = Recv a (Dual p)
Dual (Recv a p) = Send a (Dual p)
Dual End = End

The first example below defines a function attemptLogin which will authenticate
a (public) user ID and (secret) password, logging each attempt by sending only
the ID over a public channel to be printed. Note that the boolean result is
given in a Hi context, meaning that the result can only be used at this level of
confidentiality.

attemptLogin : Int
— String 7 Hi
— LChan (Send Int End) -- logging channel
— Bool [Hil
attemptLogin uid pass ¢ =
let ¢ = send c uid;
() = close ¢
in validatelLogin uid pass

Here, the auxiliary validateLogin function has the type:
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validateLogin : Int — String % Hi — Bool [Hi]

Thus, we take in the ID and password and return the result stating whether the
login has been validated or not. As one might expect, this result must be secret,
since the password was itself secret data.

In the attemptLogin function, if we tried to leak secret data by logging pass
over the channel rather than uid, this would be disallowed by the type system.

We can now extend this example and write a function doQuery, which authen-
ticates a user and then performs a query on secret data, returning, in a secret
context, a string representing the query result if the user’s password is correct
and otherwise returning an error.

doQuery : Int -- uid
— String % Hi -— password
— (LChan (Recv (String [Hi]) End)) -- secret data!
— (Either Error String) [Hil
doQuery uid pass secret =
let ¢ = forkLinear logLoginAttempt in
let [login] : Bool [Hi] = attemptlLogin uid pass c in
[ if login
then
Left AuthErr
else
let [secr] : String [Hi] = getSecret secret
in Right secr

]
The auxiliary logLoginAttempt function here is of type
logLoginAttempt : LChan (Recv (Int [Lo]) End) — (O

Since this function is public-facing, it would not be possible to log secret data
such as the password or even the boolean result stating whether the login was
successful; all we can log is that an attempt to login has occurred.

Note also that once we discriminate on the result of attemptLogin, we enter a
secret context, and so even though uid is still public data it would no longer be
possible to log this or anything else after we have reached this point. Thus, an
implicit leak is prevented. The case expression has the same typing as conditional
shown in Section [

The next example is based on the main case study demonstrated in Haskell
in the MAC paper. Here, we define a function isCommonPW which checks whether
a given password is in a standard list of common passwords. The list is public
information, but the password given to the function is of course secret data, and
so the result from the function must also be secret.

isCommonPW : String 7% Hi — List String — Bool [Hi]
isCommonPW password commonPasswords =
[ case commonPasswords of
Nil — False;
Cons x xs —
case strEq x password of
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[True]l] —
let () = drop @(List String) xs in True;
[False] —
let [isCommon] = isCommonPW password xs in isCommon

]

where strEq : String % Hi — String % Hi — Bool [Hi] is omitted for brevity.
The list of common passwords (second parameter) is public, against which we
compare our secret password recursively, returning a secret result about whether
the password is in the common list or not. This makes use of a few additional
Granule features, like the drop @(List String) feature which, based on the type
after @, derives a discarding function for the list of strings [32]. The main take-
away here is that security reasoning with coeffects scales to practical examples
involving algebraic data types and recursion.

6 Discussion and Conclusion

Section [2| considered the background related work on coeffects and graded type
systems in depth. Section [ also considered closely the most pertinent related
work here with regards the coeffect-style to IFC. To round out the related work
discussion, we consider relationship with the effect-style approach to IFC.

6.1 Alternate Presentations of Information-Flow Control

Fine-grained information-flow type systems like SLAM [29], Flow Caml [54] also
use an (annotated) modal type constructor to associate labels with every type.
For example, a pair of type A and B has labels associated to each component
and the pair as a whole, e.g., (A"! x BL2)E3. GRBASE on the other hand has
a coeffectful approach to labeling, explicit labels on inputs are mandatory, but
explicit labels on outputs are not: instead the output is essentially equivalent to
being graded at 1.

In contrast, coarse-grained type systems like DCC [I] associate and track
dependencies for a language without side-effects, with annotations on monadic
constructors (essentially extending Moggi’s monadic meta language [42]). Type
systems like HLIO [16] and CG [55, 56] extend the coarse-grained approach for
languages with higher-order mutable state. However, both HLIO and CG use a
different modal type constructor to associate labels with a type, and a monad for
tracking the flows. Unlike all these systems, GRBASE uses (comonadic) coeffect
grades for explicit labeling. As a result, our logical relation model for GRBASE
draws inspiration from the model of the fine-grained system FG due to Rajani
et al. [55].

A modern perspective on DCC is that it leverages a graded monad to package
the monad along with its structured annotations (to see this, one might follow the
thread from Wadler and Thiemann’s ‘marriage of effects and monads’ forming
a lattice of monads [67], to the more general notion of graded monads; Mycroft
et al. trace the history of these developments and the overall paradigm [44]).
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Algehed examines the monadic structure of DCC in more detail [5], showing that
DCC embeds a graded monad T, with grades ¢ drawn from the two-point lattice
L < H (also used here) but with additional structure. This additional structure
amounts to a kind of distributive law that provides TyTy» A — TpTy A. Choudhury
conducts a similar but more thorough study of the structure of DCC from both
a graded monadic vs. graded comonadic perspective, noting that “the monadic
aspect of dependency analysis might be just half of the story [...] experience
shows us that security constraints can be enforced not only by restricting outflow
but also by restricting inflow” [17]. Choudhury shows, similarly to Algehed, that
DCC is not just graded monadic but encodes a distributive law in its calculus. He
goes on to show that this distributive law can be captured by a structure which
is both a graded monad and graded comonad, whose operations are mutually
inverse, with a derivation T;Tp A £ Tyvp A = Ty A LN TpT,A. In essence,
DCC has both graded monadic and graded comonadic aspects. Here we focussed
on just the graded comonadic side of this equation via coeffects and the coeffect-
graded modality. Granule however allows the missing graded monadic part to be
recovered by its ‘double unboxing’ pattern matching [46], with:

joinSec : V {a : Type, 1 1’ : Sec} . (a [1]) [1’] — a [1 * 1’]
joinSec [[x]] = [x]

Following Choudhury’s analysis, adding this as a primitive to our GRBASE calcu-
lus here would yield a system which is equivalent in power to DCC [I7]. Choud-
hury’s calculus has a slightly different form to our own (with no linearity nor
graded assumptions or functions, but explicit graded comonad operations in-
stead), so a little more work is needed to formalise this result, which we leave as
further work. Our system is yet more general though by the use of the general
class of non-interfering semirings.

6.2 Declassification

The approach to IFC here features non-interference, but is extremely restrictive:
there cannot be any flow from a high security level to a lower. In reality, we often
want software systems to leak a small amount of information in a controlled way.
This is known as declassification [65], [45].

Our existing notion of a non-interfering semiring permits a generalisation of
the 2-point lattice considered here which, along with some built-in primitives,
can be used to capture the number of bits declassified in a computation as a
further instance of non-interfering semirings:

Ezample 5 (Declassification semiring). The L < H semiring can be generalised
to a semiring over R = NU{w} to capture the number of declassified bits, where L
(which was the multiplicative unit 1) is replaced by w to represent an arbitrarily
large number of bits being declassified and H (which is 0) being replaced by 0 € N
to represent 0-bits being declassified. In between are all possible representations
of a finite number of bits being declassified with the pre-ordering defined by
w < ... <1<0. Addition is then the maximum on NU {w}, i.e., the number of
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bits declassified by two subterms is the largest number (which according to this
ordering is the ‘meet’ A, since the ordering is going down towards infinity) and
multiplication is then the minimum (‘join’ V on this ordering), i.e., the number
of bits declassified by a composed term is the smaller number.

A declassification primitive then acts as the operation of this graded modality,
declassifying a precise number of bits for various data types, for example, for
integers, there is a primitive function of indexed type:

declassifyInt : V {n : Nat} . Nat n — Int [n] — Int

Then, a program declassifying 3-bits and then 5-bits of information from its
argument overall has to be typed as declassifying 5-bits: the maximum number
of declassified bits (via +). A program declassifying 3-bits of its argument and
then composing this with a function which declassifies 5-bits of its argument
declassifies only 3-bits of information overall, i.e., the minimum (via -).

This declassification semiring is a non-interfering semiring.

Future work is to consider a quantitative non-interference theorem that al-
lows reasoning about such declassification operations and their effect on non-
interference; we need some model that can account for the above declassification
operation and then a generalisation to our non-inference theorem here. Specifi-
cally we would like to explore how to integrate work on declassification from the
literature, such as Relative Secrecy [65]. This is further work.

An alternate approach to declassification by Hainry and Péchoux requires
that declassification operations can only happen outside of loops [27], prevent-
ing control-flow attacks from iteratively transferring information from secret to
public data. We can emulate this idea in Granule, not by restricting the language
or using some additional static analysis, but by leveraging grading to enforce a
linearity constraint.

We sketch out a more tentative implementation of this idea by introducing
an abstract data type DeclassCap capturing a declassification capability. This
could then be consumed by the following primitive function, which compares two
secret strings, producing a result which is public, but requiring a declassification
capability to be consumed once:

equality : DeclassCap % (1 : Nat)
— String % Hi — String % Hi — Bool [Lo]

Remark 3. Any definition that allows for some declassification needs to be pro-
vided as an axiom, i.e. a primitive in the compiler, as it is not internally deriv-
able. And so much the better, since this technically introduces a violation of
non-interference!

There would be no constructor for DeclassCap, instead a special compilation
mode would expect the entry-point of a program to be a function receiving a
graded declassification capability that can be used a finite number of times:

mainDeclass : V {n : Nat} . DeclassCap % n — Int [Hi]
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In this way we use grading to restrict declassification to a specified number of
comparisons only.

6.3 Critical Analysis and Flat Coeffects for Security?

One criticism of the approach described here, for example considering the two-
point lattice, is that conflating high security (H) with non-usage (0 of the semi-
ring) leads to unintuitive proofs and typing. For instance, the derivation below
(equation [4)) is valid in GRBASE because if we can prove B from 0 copies of A
then we can also prove [J. B from 0 copies of A:

z:[Ankt:B
x:[Alpkt: OB

(4)

since the context here has the grade calculated by L-H=LVH =H.

This concluding type on its own looks very worrying for non-interference: we
have a computation that takes a high-security (secret) input and produces an
output which can be used in a low-security (public) context. However, the fact
that 0 = H, coupled with the rest of the structure of the type system, means
that non-interference holds (as proved in Section . Instead, we could imagine a
system in which we avoid conflating 0 and H but require that a term producing
a low-security result requires all its dependencies to be low security.

Thus, whilst the type system is sound (it gives us non-interference), the
grades require some additional thought. Furthermore, the system severely re-
stricts expressivity in order to gain non-interference and avoid control-flow at-
tacks: as seen, we can only guard control-flow on a secret value if the entire
control-flow expression is promoted, e.g.

pnot : Bool % Hi — Bool [Hil
pnot x = [if x then True else False]

Instead, we ask, what would it take it allow the following alternate implementa-
tion, which is not well-typed under the system of this paper?

pnot’ : Bool % Hi — Bool [Hil
pnot’ x = if x then [True] else [False]

One approach could be to return to the flat coeffects of the original ICALP 2013
paper by Petricek, Orchard, and Mycroft [52] adding an ambient coeffect affected
by control-flow. Thus guarding a conditional with a secret value would introduce
an ambient security requirement into the context which must be respected by
each branch. Exploring this is future work.

6.4 Concluding Remarks

The coeffect types paradigm set out by Alan Mycroft and his students sought
to capture various context-dependent analyses via a unified type system. This
sprung from trying to dualise effect types, but later work by Alan and his stu-
dents circled back to effects to reconsider them in the light of the lessons learned
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from the coeffect system and its semantics [44]. This lead to the umbrella ap-
proach of graded modal types or more generally just graded types. As we’ve seen
in the GRBASE style: we do not necessarily need the explicit graded modal-
ity, but can instead have a type system with pervasive grading. Our focus here
was on security, an application picked up in a number of other graded types
works [2] 3] 21], but many questions remain about how to generalise these ideas
to declassification for more practical programming. It would also be interesting
to explore how to capture the notion of integrity (dual in a sense to security/con-
fidentiality) in a more general manner than has been previously discussed [37].

An opportunity presents itself for the further impact of these ideas through
the GHC Haskell compiler, which already implements a simple graded coeffect
type system internally to enable its LinearTypes extension [§]. Perhaps some day
in the future there may even be a SecurityTypes or CoeffectTypes extension
that generalises that implementation, building on the more general systems laid
down by Mycroft et al. and as seen in the Granule language.
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