
Graded Types - Part 2
Extending from linear types to graded types

Dominic Orchard, 24-28th July 2023, SPLV23

Modal
Type

Analysis

Graded
Modal
Type

Analysis

43

linear non-linear

!AA

linear non-linear

r ! A r ∈ ℛ
semiring

 / 1444

linear logic — use exactly once

! modality — use any number of times

 / 1445

linear types — use exactly once

☐n modality — use at most n number of times

☐ω modality — use any number of times

…

♢XA
♢YA

♢WA
♢ZA

…

☐RA ☐SA

☐TA☐UA

☐PA

Indexed
families

Graded modalities (informally)

with structure

matching the shape of proofs/programs or a semantics

♢A ☐A

46

Graded modal types
(graded necessity)

in
Granule

110

!antitative Program Reasoning with Graded Modal Types

DOMINIC ORCHARD, University of Kent, UK

VILEM-BENJAMIN LIEPELT, University of Kent, UK

HARLEY EADES III, Augusta University, USA

In programming, some data acts as a resource (e.g., !le handles, channels) subject to usage constraints.
This poses a challenge to software correctness as most languages are agnostic to constraints on data. The
approach of linear types provides a partial remedy, delineating data into resources to be used but never
copied or discarded, and unconstrained values. Bounded Linear Logic provides a more !ne-grained approach,
quantifying non-linear use via an indexed-family of modalities. Recent work on coe!ect types generalises
this idea to graded comonads, providing type systems which can capture various program properties. Here,
we propose the umbrella notion of graded modal types, encompassing coe"ect types and dual notions of
type-based e"ect reasoning via graded monads. In combination with linear and indexed types, we show that
graded modal types provide an expressive type theory for quantitative program reasoning, advancing the
reach of type systems to capture and verify a broader set of program properties. We demonstrate this approach
via a type system embodied in a fully-#edged functional language called Granule, exploring various examples.

CCS Concepts: • Theory of computation→Modal and temporal logics; Program speci!cations; Pro-
gram veri!cation; Linear logic; Type theory.

Additional Key Words and Phrases: graded modal types, linear types, coe"ects, implementation

ACM Reference Format:
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning
with Graded Modal Types. Proc. ACM Program. Lang. 3, ICFP, Article 110 (August 2019), 30 pages. https:
//doi.org/10.1145/3341714

1 INTRODUCTION

Most programming languages treat data as in!nitely copiable, arbitrarily discardable, and univer-
sally unconstrained. However, this overly abstract view is naïve and can lead to software errors. For
example, some data encapsulates resources subject to protocols (e.g., !le and device handles, chan-
nels); some data has con!dentiality requirements and thus should not be copied or communicated
arbitrarily. Dually, some programs have non-functional properties (e.g., execution time) dependent
on data (e.g., on its size). Thus, the reality is that some data acts as a resource, subject to constraints.

In this paper we present Granule, a typed functional language that embeds a notion of data as a
resource into the type system in a way that can be specialised to di"erent resource and data#ow
properties. Granule’s type system combines linear types, indexed types (lightweight dependent
types), and graded modal types to enable novel quantitative reasoning.
Linear types treat data like a physical resource which must be used once, and then never

again [Girard 1987; Wadler 1990]. For example, the identity function is linearly typed as it binds a

Authors’ addresses: Dominic Orchard, School of Computing, University of Kent, UK; Vilem-Benjamin Liepelt, School of
Computing, University of Kent, UK; Harley Eades III, School of Computer and Cyber Sciences, Augusta University, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/8-ART110
https://doi.org/10.1145/3341714

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

ICFP 2019

49

LOPSTR 2020

Semiring graded modalities
capture dataflow

Linear

use

Weaken

discard

Contract

split
1 0 + *

Grading algebra (semiring) captures dataflow

Compose

f

g

sequence

Security levels

Public

Private≥

(In case I forget): Next demo

Discharge
constraints

automatically

SMT solver

anule language

Precision Indexed types
+

Data as
resource

Linear
types

Quantitative
reasoning

+
Graded

modalities

The
GADTs

52

A, B ::= A → B ∣ □r A Non-linear value of type A

Non-linear variable x of type A

Γ ::= ∅ ∣ Γ, x : A ∣ Γ, x : [A]r

Linear types + graded modality
r ∈ (R, *, 1, +, 0) is a semiring

x : [A]2 ⊢ (x, x) : A ⊗ A
∅ ⊢ λ[x] . (x, x) : □2 A → A ⊗ A

e.g.

(2013) Petricek, O, Mycroft - Coeffects: Unified Static Analysis of Context-Dependence
(2014) Ghica, Smith - Bounded linear types in a resource semiring
(2014) Brunel, Gaboardi, Mazza, Zdancewic - A Core Quantitative Coeffect Calculus

Γ1 ⊢ t : A ⊸ B Γ2 ⊢ t′ : A
Γ1 + Γ2 ⊢ t t′ : B

,--

Γ1, x : A + Γ2 = (Γ1 + Γ2), x : A if x ∉ |Γ2 |
Γ1 + (Γ2, x : A) = (Γ1 + Γ2), x : A if x ∉ |Γ1 |

(Γ1, x : [A]r) + (Γ2, x : [A]s) = (Γ1 + Γ2), x : [A]r+s

{contraction

Use anytime we need to combine contexts

Linear types + graded modality

Γ ⊢ t : B
Γ, x : [A]0 ⊢ t : B

/0,1

r ∈ (R, *, 1, +, 0) is a semiring

55

Treat a linear variable as
non-linear 

(dereliction)

Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
203

Modal rule 1 - Dereliction

Modal rule 2 - Promotion Non-linear results
require non-linear

variables

(promotion)

[Γ] ⊢ t : B
r * [Γ] ⊢ [t] : □r B

-3

Modal rule 3 - Cut

Γ ⊢ t1 : □r A Δ, x : [A]r ⊢ t2 : B
Γ + Δ ⊢ 506 [x] = t1 78 t2 : B

9:6

Composition
(substitution) of
non-linear value

into non-linear
variable

A core quantitative coeffect calculus [Brunel et al. ‘14]

Nested pattern matching and grades

Inner patterns inherit grade of outer patterns

Binds (which Granule reports using notation: x : .[a]. [n]…)x : [A]n, y : [B]n

56

push : forall {a b : Type, n : Nat}
 . (a, b) [n] -> (a [n], b [n])

push [(x, y)] = ([x], [y])

Nested pattern matching and grades
push : forall {a b : Type, n : Nat}
 . (a, b) [n] -> (a [n], b [n])

push [(x, y)] = ([x], [y])

But … linear logic does not permit !(A ⊗ B) ⊸ !A⊗!B

57

push : forall {a b : Type, s : Semiring, r : s}
 . {r ⨱ r} => (a, b) [r] -> (a [r], b [r])

push [(x, y)] = ([x], [y])

(2021) Hughes et al.: Linear Exponentials as Graded Modal Types

Instead… partial operation added to act as predicate

58

f : (Vec … Patient) [0..1] -> …

f [Cons (Patient [city] [_])] = …

Two layers of grading

Public 0..1

city : .[String]. ([0..1] × Public)

Generates the context

Semirings
Nat : Semiring
Level : Semiring {Private, Public} or {Hi, Lo}

Q : Semiring (see examples/scale.gr)

LNL : Semiring {Zero, One, Many}

Cartesian : Semiring {Any}

Set : Type -> Semiring (see examples/sets.gr)
SetOp : Type -> Semiring

Ext : Semiring -> Semiring (Ext =)
Interval : Semiring -> Semiring

 : Semiring -> Semiring -> Semiring

ℛ ℛ ∪ {∞}

_ × _
59

http://scale.gr
http://sets.gr

Recovering as a graded monad!A
Semiring ℛ = {>03?, @80, A,8B}

!A = □A,8B A

Semiring-graded necessity captures graded comonads

☐ 1A → A

☐ r∗s A → ☐r ☐s AAxioms: ☐ 0A → 1
☐ r+s A → ☐r A ∧ ☐ s A

☐r (A → B) → ☐ r A → ☐ r B ☐sA → ☐rA where r ≤ s

Model: exponential graded comonad

61

(2013) Petricek, O, Mycroft - Coeffects: Unified Static Analysis of Context-Dependence
(2014) Ghica, Smith - Bounded linear types in a resource semiring
(2014) Brunel, Gaboardi, Mazza, Zdancewic - A Core Quantitative Coeffect Calculus

All of these are derivable from the rules

Session 1 - 2
Learning plan

Learn about linear types

Learn how a type system is formally specified

Specifically: linear types for the lambda calculus

See examples of linear programs in Granule

Learn about (a particular flavour of) modalities and graded modalities

