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linear logic — use exactly once

! modality — use any number of times
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linear types — use exactly once

☐n modality — use at most n number of times

☐ω modality — use any number of times
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!antitative Program Reasoning with Graded Modal Types

DOMINIC ORCHARD, University of Kent, UK

VILEM-BENJAMIN LIEPELT, University of Kent, UK

HARLEY EADES III, Augusta University, USA

In programming, some data acts as a resource (e.g., !le handles, channels) subject to usage constraints.
This poses a challenge to software correctness as most languages are agnostic to constraints on data. The
approach of linear types provides a partial remedy, delineating data into resources to be used but never
copied or discarded, and unconstrained values. Bounded Linear Logic provides a more !ne-grained approach,
quantifying non-linear use via an indexed-family of modalities. Recent work on coe!ect types generalises
this idea to graded comonads, providing type systems which can capture various program properties. Here,
we propose the umbrella notion of graded modal types, encompassing coe"ect types and dual notions of
type-based e"ect reasoning via graded monads. In combination with linear and indexed types, we show that
graded modal types provide an expressive type theory for quantitative program reasoning, advancing the
reach of type systems to capture and verify a broader set of program properties. We demonstrate this approach
via a type system embodied in a fully-#edged functional language called Granule, exploring various examples.

CCS Concepts: • Theory of computation→Modal and temporal logics; Program speci!cations; Pro-
gram veri!cation; Linear logic; Type theory.

Additional Key Words and Phrases: graded modal types, linear types, coe"ects, implementation

ACM Reference Format:
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning
with Graded Modal Types. Proc. ACM Program. Lang. 3, ICFP, Article 110 (August 2019), 30 pages. https:
//doi.org/10.1145/3341714

1 INTRODUCTION

Most programming languages treat data as in!nitely copiable, arbitrarily discardable, and univer-
sally unconstrained. However, this overly abstract view is naïve and can lead to software errors. For
example, some data encapsulates resources subject to protocols (e.g., !le and device handles, chan-
nels); some data has con!dentiality requirements and thus should not be copied or communicated
arbitrarily. Dually, some programs have non-functional properties (e.g., execution time) dependent
on data (e.g., on its size). Thus, the reality is that some data acts as a resource, subject to constraints.

In this paper we present Granule, a typed functional language that embeds a notion of data as a
resource into the type system in a way that can be specialised to di"erent resource and data#ow
properties. Granule’s type system combines linear types, indexed types (lightweight dependent
types), and graded modal types to enable novel quantitative reasoning.
Linear types treat data like a physical resource which must be used once, and then never

again [Girard 1987; Wadler 1990]. For example, the identity function is linearly typed as it binds a
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A, B ::= A → B ∣ □r A Non-linear value of type A

Non-linear variable x of type A

Γ ::= ∅ ∣ Γ, x : A ∣ Γ, x : [A]r

Linear types + graded modality
r ∈ (R, *, 1, +, 0) is a semiring

x : [A]2 ⊢ (x, x) : A ⊗ A
∅ ⊢ λ[x] . (x, x) : □2 A → A ⊗ A

e.g.

(2013) Petricek, O, Mycroft - Coeffects: Unified Static Analysis of Context-Dependence
(2014) Ghica, Smith - Bounded linear types in a resource semiring 
(2014) Brunel, Gaboardi, Mazza, Zdancewic - A Core Quantitative Coeffect Calculus



Γ1 ⊢ t : A ⊸ B Γ2 ⊢ t′ : A
Γ1 + Γ2 ⊢ t t′ : B

,--

Γ1, x : A + Γ2 = (Γ1 + Γ2), x : A if x ∉ |Γ2 |
Γ1 + (Γ2, x : A) = (Γ1 + Γ2), x : A if x ∉ |Γ1 |

(Γ1, x : [A]r) + (Γ2, x : [A]s) = (Γ1 + Γ2), x : [A]r+s

{contraction

Use anytime we need to combine contexts

Linear types + graded modality

Γ ⊢ t : B
Γ, x : [A]0 ⊢ t : B

/0,1

r ∈ (R, *, 1, +, 0) is a semiring
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Treat a linear variable as 
non-linear 

(dereliction)

Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
203

Modal rule 1 - Dereliction

Modal rule 2 - Promotion Non-linear results 
require non-linear 

variables

(promotion)

[Γ] ⊢ t : B
r * [Γ] ⊢ [t] : □r B

-3

Modal rule 3 - Cut

Γ ⊢ t1 : □r A Δ, x : [A]r ⊢ t2 : B
Γ + Δ ⊢ 506 [x] = t1 78 t2 : B

9:6

Composition 
(substitution) of 
non-linear value


into non-linear 
variable

A core quantitative coeffect calculus [Brunel et al. ‘14]



Nested pattern matching and grades

Inner patterns inherit grade of outer patterns

Binds   (which Granule reports using notation: x : .[a]. [n]…)x : [A]n, y : [B]n
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push : forall {a b : Type, n : Nat} 
     . (a, b) [n] -> (a [n], b [n]) 
 
push [(x, y)] = ([x], [y]) 



Nested pattern matching and grades
push : forall {a b : Type, n : Nat} 
     . (a, b) [n] -> (a [n], b [n]) 
 
push [(x, y)] = ([x], [y]) 

But … linear logic does not permit !(A ⊗ B) ⊸ !A⊗!B
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push : forall {a b : Type, s : Semiring, r : s}  
     . {r ⨱ r} => (a, b) [r] -> (a [r], b [r]) 
 
push [(x, y)] = ([x], [y])

(2021) Hughes et al.: Linear Exponentials as Graded Modal Types

Instead… partial operation added to act as predicate
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f : (Vec … Patient) [0..1] -> … 

f [Cons (Patient [city] [_]) ] = …

Two layers of grading

Public 0..1

city : .[String]. ([0..1] × Public)

Generates the context



Semirings
Nat       : Semiring 
Level     : Semiring                {Private, Public} or {Hi, Lo} 

Q         : Semiring                         (see examples/scale.gr)

LNL       : Semiring                                                       {Zero, One, Many}

Cartesian : Semiring                                        {Any}

Set       : Type -> Semiring                 (see examples/sets.gr) 
SetOp     : Type -> Semiring 

Ext       : Semiring -> Semiring               (Ext  = ) 
Interval  : Semiring -> Semiring 

      : Semiring -> Semiring -> Semiring

ℛ ℛ ∪ {∞}

_ × _
59

http://scale.gr
http://sets.gr


Recovering  as a graded monad!A
Semiring ℛ = {>03?, @80, A,8B}

!A = □A,8B A



Semiring-graded necessity captures graded comonads

☐ 1A → A

☐ r∗s A → ☐r ☐s AAxioms: ☐ 0A → 1
☐ r+s A →  ☐r A  ∧  ☐ s A

☐r (A → B )  →  ☐ r A →  ☐ r B ☐sA → ☐rA where r ≤ s

Model: exponential graded comonad
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(2013) Petricek, O, Mycroft - Coeffects: Unified Static Analysis of Context-Dependence
(2014) Ghica, Smith - Bounded linear types in a resource semiring 
(2014) Brunel, Gaboardi, Mazza, Zdancewic - A Core Quantitative Coeffect Calculus

All of these are derivable from the rules 



Session 1 - 2
Learning plan

Learn about linear types


Learn how a type system is formally specified

Specifically: linear types for the lambda calculus


See examples of linear programs in Granule


Learn about (a particular flavour of) modalities and graded modalities


