G

Graded Types - Part 3

Communication, uniqueness, and mutability

5% UNIVERSITY OF University of

Kent

¢» CAMBRIDGE

Dominic Orchard, 24-28th July 2023, SPLV23

A few things re pattern matching and substructurality...

Generic deriving useful operations for graded + linear types TLLA 2021

Deriving Distributive Laws for Graded Linear Types

Jack Hughes Michael Vollmer

School of Computing, University of Kent School of Computing, University of Kent

Dominic Orchard
School of Computing, University of Kent

The recent notion of graded modal types provides a framework for extending type theories with fine-
grained data-flow reasoning. The Granule language explores this ideain the context of inear types. In
this practical setting, we obscrve that the presence of graded modal types can introduce an additional
impediment when programming: when composing programs, it is often necessary (o ‘distribute’ data
types over graded modalities, and vice versa. In this paper, we show how to automatically derive these
distributive laws as combinators for programming. We discuss the implementation and use of this
automated deriving procedure in Granule, providing easy access to these distributive combinators.
This work is also applicable to Linear Haskell (which retrofits Haskell with linear types via grading)
and we apply our technique there to provide the same automatically derived combinators. Along
the wav. we discuss interestine considerations for pattern matchine analvsis via eraded linear tvoes.

So far....

Data
as a resource

e.g.,

e Specifying programs based on (re)use

o Security / confidentiality information

* File handles with protocols of interaction

65

Session types in Granule

send

recv
forkLinear
close

selectlLeft

selectRight :

offer

LChan (Send a p) -> a -> LChan p
LChan (Recv a p) -> (a, LChan p)
(LChan p -> ()) -> LChan (Dual p)
LChan End -> ()

LChan (Select pl p2) -> LChan pl

LChan (Select pl p2) -> LChan p2

(LChan pl -> a) -> (LChan p2 -> a)
-> LChan (Offer pl p2) -> a

From the exercises sheet...

3. Using the Cake module, define a function mange that takes n +m cakes, consumes n of them,
leaving m left and n amounts of happiness.

\What does “n + m cakes” mean?

It depends on our reduction semantics

Graded modalities and reduction semantics

[> t’/ [t] : |:|2 A
[7] v 1]
| “two uses of an A”
let [x] = [v] In ¢/ w [v/x]t let [x] = [f] In '~ [t/x]t
CV \BN
evaluate 7 once evaluate f twice
t w7ty t w*y [vy

use value v twice

Graded modalities and reduction semantics

[newArray...]: [A

“two uses of an A”

CV \BN
evaluate 7 once evaluate 7 twice
t ~* arrayRef(:) t ~* arrayRef(i) rw* arrayRef(/")

arrayRef(i) could be used in two threads, creating a race on writes

Unsound and unsafe

69

CBYV, grading, and resources o

—resourceAllocator(e) I'|F17:A
r*I'F[f] : [, A

resourceAllocator(e)

A term e whose
reduction to a normal
form creates a heap-
allocated resource,

e.g., a channel, array,
handle

resourceAllocator(forkLinear v)

and other related resource allocators
+induct over syntax

resourceAllocator(t)
resourceAllocator(|[t])

resourceAllocator(;) resourceAllocator(t,) resourceAllocator()
resourceAllocator(t, t;) resourceAllocator(t; t,) resourceAllocator((Az.t) t,)

resourceAllocator(t;) resourceAllocator(t,)
resourceAllocator(let (z] = t; in t;) resourceAllocator(let [z] = % in t;)

resourceAllocator(t;) resourceAllocator()
resourceAllocator(let unit = ¢; in #;) resourceAllocator(let unit = t; in t,)

resourceAllocator(t) resourceAllocator ()

resourceAllocator(let (z,y) =t in t;) resourceAllocator(let (z,y) = t; in 1)

resourceAllocator(;) resourceAllocator(t,)
resourceAllocator((%;, %)) resourceAllocator((t;, t,))

CBYV, grading, and resources

—resourceAllocator(e) I'|F17:A
r*I'F[f] : [, A

But, you can return to the standard CBN theory:

language CBN

[z A
r*l"F1t]: [A

Recall: Types for the “four Rs” of PL design

Reading
> Documentation
‘Riting
» Specification (intention)

> Synthesis
Reasoning
- Guarantee absence of some bugs In-place update
> Program properties (see ‘Free Theorems’) (Mutation)
Running

> Optimisations

Dominic A. Orchard:
The four Rs of programming language design. Onward! 2011: 157-162

https://dblp.org/db/conf/oopsla/onward2011.html#Orchard11

n

Check for
updates

ESOP 2022

Daniel Marshall! (X0) @, Michael Vollmer! @, and Dominic Orchard!+?

! University of Kent, Canterbury, UK
{dm635,m.vollmer,d.a.orchard}@kent.ac.uk
¢ University of Cambridge, UK

Abstract. Substructural type systems are growing in popularity be-
cause they allow for a resourceful interpretation of data which can be
used to rule out various software bugs. Indeed, substructurality is fi-
nally taking hold in modern programming; Haskell now has linear types
roughly based on Girard’s linear logic but integrated via graded function
arrows, Clean has uniqueness types designed to ensure that values have
at most a single reference to them, and Rust has an intricate ownership
system for guaranteeing memory safety. But despite this broad range
of resourceful type systems, there is comparatively little understanding
of their relative strengths and weaknesses or whether their underlying
frameworks can be unified. There is often confusion about whether lin-
earity and uniqueness are essentially the same, or are instead ‘dual’ to
one another, or somewhere in between. This paper formalises the re-
lationship between these two well-studied but rarely contrasted ideas,

[N o ,;

Linearity and Uniqueness: An Entente Cordiale

Linear types are like cake

You can only eat them once.

You have to eat them

desire : Cake -> (Happy, Cake)

desire cake = (eat cake, have cake)

75

Unique types are like coffee

A fresh coffee has just been poured.
We can sip our coffee, but...
then i1t is no longer fresh!

share :: -> (Awake,
share coffee = (drink coffee, keep coffee)

\

What’s the difference?

] - . - C\ a “h e
Clean is a commercially developed, pure functional programming language. It O 3 SR et e
~ . - '? O > '\C‘o u €) “0 a Wi : 63‘

V8 uses uniqueness types (Barendsen and Smetsers, 1993), which are a variant of \igy\\eve’w<0“g“ﬂgs,\h O FF o o W
L LT : : y N® Nt
.~ linear types, and strictness annotations (NOocker and Smetsers, 1993) to help *:'* NFEoy

a function uses its argument exactly once even if the call’s context can share a linear argument as
many times as it pleases, a uniqueness type ensures that the argument of a function is not used
anywhere else in the expression’s context even if the callee can work with the argument as it pleases.

Unique types guarantee that a value has
nhever been duplicated in the past.

types restrict a value from ever being
duplicated (or discarded) in the future.

“How can we use both?”

] * Unigue values under an
Umque a additional modality *
l sharing
Cartesian 12 Cartesian values under a

comonadic ! modality

values as the base

Mutable array interface (on unique arrays)

newFloatArray : Int -> *FloatArray

readFloatArray : *FloatArray -> Int -> (Float, *FloatArray)
writeFloatArray : *FloatArray -> Int -> Float -> *FloatArray
lengthFloatArray : *FloatArray -> (Int, *FloatArray)

deleteFloatArray : *FloatArray -> ()

and with... resourceAllocator(newFloatArray v)

79

Sharing (“borrow”) and cloning

Ckt:*A I'F6 A Ty,x:"AFt !B
['F share r: A I''+1,Fclonet,asxint: !B

Therefore !A is a relative monad (relative to *)

F'17¢:A ' A ThL,x:AFt B
[F return ¢ : MA I'+I,F(dox «<t:1): !B

Relative monad axioms

right-unity clonetasxin(sharex) =t
(left-unity clone (sharev)asxint' = [v/x]|t

(assoc) clonet;asxin(clonet,asyint;)
= clone (clone #;asxint))asyint;

(wWhere x & fv(t;))

Immutable array interface (on linear arrays)

newFloatArrayl : Int -> FloatArray
readFloatArrayl : FloatArray -> Int -> (Float, FloatArray)
writeFloatArrayl : FloatArray -> Int -> Float -> FloatArray

lengthFloatArrayIl : FloatArray -> (Int, FloatArrav)

deleteFloatArray—— o —>— 1

No delete as multiple references may be held in CBV

82

Graded uniqueness (the third flavour...)
Work under review ©© sk A

&.A &A &A

Uniquely owned A D — ((),1) C (L:[) Mutable borrow

Immutable borrow

+ primitives for borrowing,
mutable borrowing by e.g. split: &pA —o &rA QR &rA
splitting/joining lifetimes ’ ’

(follow Daniel Marshall’s work -> https://starsandspira.ls/) *

https://starsandspira.ls/

Here 1s what I consider one of the
biggest mistakes of all in modal logic:
concentration on a system with just one
modal operator

Dana Scott (1968)

