
Graded Types - Part 3
Communication, uniqueness, and mutability

Dominic Orchard, 24-28th July 2023, SPLV23



TLLA 2021

A few things re pattern matching and substructurality…

Generic deriving useful operations for graded + linear types



So far….

e.g.,  
• Specifying programs based on (re)use 
• Security / confidentiality information 
• File handles with protocols of interaction

65

Data
as a resource



Session types in Granule
 send        :  LChan (Send a p) -> a -> LChan p 
 recv        :  LChan (Recv a p) -> (a, LChan p) 
 forkLinear  :  (LChan p -> ())  -> LChan (Dual p) 
 close       :  LChan End -> () 

 selectLeft  :  LChan (Select p1 p2) -> LChan p1 
 selectRight :  LChan (Select p1 p2) -> LChan p2 
 offer       :  (LChan p1 -> a) -> (LChan p2 -> a) 
                  -> LChan (Offer p1 p2) -> a



You can then load this into Granule’s interactive mode (grepl) as follows:

$ grepl
Granule> :l exercises.gr
~/granule/exercises.gr, checked.
Granule> dup 42
84

2. In Granule, make the following functions typecheck by addition of the non-linear ‘box’ modal-

ity (written a []) only where needed, and add the relevant unboxing pattern matches at the

value level.

const : forall {a b : Type} . a -> b -> a
const x y = x

ap : forall {a b c : Type}. (c -> a -> b) -> (c -> a) -> (c -> b)
ap f x ctx = f ctx (x ctx)

3. Consider the following definition:

import Bool

copyBool : Bool -> (Bool, Bool)
copyBool False = (False, False);
copyBool True = (True, True)

Why does copyBool not violate linearity?

4. Write a well-typed “short-circuiting” version of and on Bool, i.e., where and False x need

not inspect the value of x.

3 Graded modal types

1. Define a higher-order polymorphic function twice that takes a function and composes it with

itself, e.g. in the lambda calculus \f -> \x -> f (f x). Give a precise type explaining the

reuse of the function parameter using the Nat-graded modality.

Give an example of its usage, e.g., applying some integer function twice to an integer input.

2. Define a version of twice that is polymorphic in the semiring.

3. Using the Cake module, define a function mange that takes n+m cakes, consumes n of them,

leaving m left and n amounts of happiness.

Hint: Check the library documentation
1
for the Cake module.

The following data type defines patient records with a public field (city) and a private field (name):

1https://granule-project.github.io/docs

2

What does “n + m cakes” mean?

It depends on our reduction semantics

From the exercises sheet…



Graded modalities and reduction semantics

□2 A
“two uses of an ”A

CBV CBN

evaluate  once t
t ⇝* v

evaluate  twicet

68

[t] :

t ⇝* v t ⇝* v
use value  twicev

#$% [x] = [t] &' t′ ⇝ [t/x]t#$% [x] = [v] &' t′ ⇝ [v/x]t

t ⇝ t′ 

[t] ⇝ [t′ ]



Graded modalities and reduction semantics

□2 A
“two uses of an ”A

CBV CBN

evaluate  once t evaluate  twicet

69

[newArray . . . ] :

t ⇝* arrayRef(i) t ⇝* arrayRef(i′ )
arrayRef(i) could be used in two threads, creating a race on writes

t ⇝* arrayRef(i)

Unsound and unsafe



CBV, grading, and resources

70

¬)$*+,)-$.##+-/%+)(e) [Γ] ⊢ t : A
r * Γ ⊢ [t] : □r A



)$*+,)-$.##+-/%+)(e)
A term  whose 
reduction to a normal 
form creates a heap-
allocated resource, 
e.g., a channel, array, 
handle

e and other related resource allocators
)$*+,)-$.##+-/%+)(2+)34&'$/) v)

+induct over syntax



CBV, grading, and resources

72

¬)$*+,)-$.##+-/%+)(e) [Γ] ⊢ t : A
r * Γ ⊢ [t] : □r A

Γ] ⊢ t : A
r * Γ ⊢ [t] : □r A

 language CBN

But, you can return to the standard CBN theory: 



Recall: Types for the “four Rs” of PL design
Reading 
‣ Documentation


‘Riting 
‣ Specification (intention)

‣ Synthesis


Reasoning 
‣ Guarantee absence of some bugs

‣ Program properties (see ‘Free Theorems’)


Running 
‣ Optimisations

Dominic A. Orchard:
The four Rs of programming language design. Onward! 2011: 157-162

In-place update 
(Mutation)

https://dblp.org/db/conf/oopsla/onward2011.html#Orchard11


Linearity and Uniqueness: An Entente Cordiale

Daniel Marshall1 (!) , Michael Vollmer1 , and Dominic Orchard1,2

1 University of Kent, Canterbury, UK
{dm635,m.vollmer,d.a.orchard}@kent.ac.uk

2 University of Cambridge, UK

Abstract. Substructural type systems are growing in popularity be-
cause they allow for a resourceful interpretation of data which can be
used to rule out various software bugs. Indeed, substructurality is fi-
nally taking hold in modern programming; Haskell now has linear types
roughly based on Girard’s linear logic but integrated via graded function
arrows, Clean has uniqueness types designed to ensure that values have
at most a single reference to them, and Rust has an intricate ownership
system for guaranteeing memory safety. But despite this broad range
of resourceful type systems, there is comparatively little understanding
of their relative strengths and weaknesses or whether their underlying
frameworks can be unified. There is often confusion about whether lin-
earity and uniqueness are essentially the same, or are instead ‘dual’ to
one another, or somewhere in between. This paper formalises the re-
lationship between these two well-studied but rarely contrasted ideas,
building on two distinct bodies of literature, showing that it is possible
and advantageous to have both linear and unique types in the same type
system. We study the guarantees of the resulting system and provide
a practical implementation in the graded modal setting of the Granule
language, adding a third kind of modality alongside coeffect and effect
modalities. We then demonstrate via a benchmark that our implementa-
tion benefits from expected efficiency gains enabled by adding uniqueness
to a language that already has a linear basis.

Keywords: linear types · uniqueness types · substructural logic

1 Introduction

Linear types [15, 57] and uniqueness types [5, 47] are two influential and long-
standing flavours of substructural type system. As these approaches have devel-
oped, it has become clear in the community (both in folklore and the literature)
that these are closely related ideas. For example, the chapter on substructurality
in Advanced Topics in Types and Programming Languages [62] describes unique-
ness types as “a variant of linear types”. This framing is supported by various
works which, for example, make reference to “a form of linearity (called unique-
ness)” [33] or other such statements of equality or similarity [38].

But reading a different set of papers gives a contrasting impression that
linearity and uniqueness are not the same but in some sense dual to one another,

c© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 346–375, 2022.
https://doi.org/10.1007/978-3-030-99336-8_13

ESOP 2022



You can only eat them once. 

You have to eat them

Linear types are like cake

desire : Cake -> (Happy, Cake) 
 desire cake = (eat cake, have cake)

75



A fresh coffee has just been poured. 
We can sip our coffee, but… 
then it is no longer fresh!

Unique types are like coffee

 share :: *Coffee -> (Awake, *Coffee) 
 share coffee = (drink coffee, keep coffee)

76



What’s the difference?

Linear types restrict a value from ever being 
duplicated (or discarded) in the future.

Unique types guarantee that a value has 
never been duplicated in the past.

6/20



“How can we use both?”

Linear values as the baseLinear a

Unique

!a Cartesian

*a
sharing

dereliction

Cartesian values under a

comonadic ! modality


Unique values under an 

additional modality *. 


9/20



Mutable array interface (on unique arrays)
newFloatArray : Int -> *FloatArray

readFloatArray : *FloatArray -> Int -> (Float, *FloatArray)

writeFloatArray : *FloatArray -> Int -> Float -> *FloatArray

lengthFloatArray : *FloatArray -> (Int, *FloatArray)

deleteFloatArray : *FloatArray -> ()

79

)$*+,)-$.##+-/%+)('$56#+/%.))/7 v)and with…



Sharing (“borrow”) and cloning

Therefore  is a relative monad (relative to )!A *

Γ ⊢ t : * A
Γ ⊢ *8/)$ t : !A

Γ1 ⊢ t1 : !A Γ2, x : * A ⊢ t2 : !B
Γ1 + Γ2 ⊢ -#+'$ t1 /* x &' t2 : !B

Γ ⊢ t : A
Γ ⊢ )$%,)' t : MA

Γ1 ⊢ t1 : !A Γ2, x : A ⊢ t2 : !B
Γ1 + Γ2 ⊢ (9+ x ← t1; t2) : !B

80



Relative monad axioms

(58$)$ x ∉ 2<(t3))

-#+'$ t /* x &' (*8/)$ x) ≡ t(right-unit)

-#+'$ (*8/)$ v) /* x &' t′ ≡ [v/x]t′ (left-unit)

-#+'$ t1 /* x &' (-#+'$ t2 /* y &' t3)
≡ -#+'$ (-#+'$ t1 /* x &' t2) /* y &' t3

(assoc)



Immutable array interface (on linear arrays)

82

newFloatArrayI : Int -> FloatArray

readFloatArrayI : FloatArray -> Int -> (Float, FloatArray)

writeFloatArrayI : FloatArray -> Int -> Float -> FloatArray

lengthFloatArrayI : FloatArray -> (Int, FloatArray)

deleteFloatArray : FloatArray -> ()

No delete as multiple references may be held in CBV



Graded uniqueness (the third flavour…)
Work under review " * A

&*A
Uniquely owned A p ∈ (0,1) ⊂ ℚ

Immutable borrow

&pA &1A
Mutable borrow

+ primitives for borrowing, 
mutable borrowing by 

splitting/joining lifetimes

83(follow Daniel Marshall’s work -> https://starsandspira.ls/)

e.g.  *A#&% : &pA ⊸ &p
2
A ⊗ &p

2
A

https://starsandspira.ls/


Here is what I consider one of the 
biggest mistakes of all in modal logic: 
concentration on a system with just one 
modal operator

Dana Scott (1968)


